Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2017 Vol. 37, No. 6
Article Contents

LI Zhengyong, LIAO Yinfei, ZHAO Yifan, LAI Qingteng, LIAO Yanwang, DING Shihao, LV Kai. Review on the Influences of Dissolved Ions and Slime in Zinc Oxide Ores Flotation System[J]. Conservation and Utilization of Mineral Resources, 2017, (6): 97-102. doi: 10.13779/j.cnki.issn1001-0076.2017.06.018
Citation: LI Zhengyong, LIAO Yinfei, ZHAO Yifan, LAI Qingteng, LIAO Yanwang, DING Shihao, LV Kai. Review on the Influences of Dissolved Ions and Slime in Zinc Oxide Ores Flotation System[J]. Conservation and Utilization of Mineral Resources, 2017, (6): 97-102. doi: 10.13779/j.cnki.issn1001-0076.2017.06.018

Review on the Influences of Dissolved Ions and Slime in Zinc Oxide Ores Flotation System

  • Zinc ore is an important strategic mineral resource in China. Zinc oxide ore is one of the primary zinc ores. Flotation is the most commonly used method for beneficiation and pretreatment of zinc oxide ores. Due to the high contents of soluble salt and slime, the adverse impact of dissolved ion and slime in the flotation system is notable, which severely restricts the flotation efficiency of zinc oxide ores. The research progress on impacts of dissolved ions and slime in zinc oxide ores flotation system were summarized in this paper. The types and influence laws of dissolved ions and slime as well as the corresponding eliminating method were reviewed in detail. Moreover, the development trends of the research were also discussed. High efficient flotation technology and microcosmic mechanism would be the research trends of the influences of dissolved ions and slime in zinc oxide ores flotation system.

  • 加载中
  • [1] 宋龑, 刘全军, 常富强.氧化锌矿的浮选现状与研究进展[J].矿冶, 2012, 21(3):19-22.

    Google Scholar

    [2] 段秀梅, 罗琳.氧化锌矿浮选现状评述[J].矿冶, 2000, 9(4):47-51.

    Google Scholar

    [3] Majid Ejtemaei, Mahdi Gharabaghi, Mehdi Irannajad. A review of zinc oxide mineral beneficiation using flotation method[J]. Advances in Colloid and Interface Science, 2014, 206:68-78. doi: 10.1016/j.cis.2013.02.003

    CrossRef Google Scholar

    [4] 谭欣, 李长根.国内外氧化铅锌矿浮选研究进展(Ⅱ)[J].国外金属矿选矿, 2000(4):2-10.

    Google Scholar

    [5] 谭欣, 李长根.氧化铅锌矿物和含钙、镁、铁、硅矿物分离新方法——CF法研究[J].矿冶, 2002, 11(2):20-25.

    Google Scholar

    [6] 邓荣东. 氧化锌矿矿浆中离子存在行为及吸附机理研究[D]. 昆明: 昆明理工大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10674-1015638935.htm

    Google Scholar

    [7] 崔萌萌. 菱锌矿与石英浮选分离中难免离子的影响及消除[D]. 长沙: 中南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10533-1012474128.htm

    Google Scholar

    [8] Qing Shi, Guofan Zhang, Qiming Feng, et al. Effect of solution chemistry on the flotation system of smithsonite and calcite[J]. International Journal of Mineral Processing, 2013, 119:34-39. doi: 10.1016/j.minpro.2012.12.011

    CrossRef Google Scholar

    [9] Qing Shi, Qiming Feng, Guofan Zhang, et al. Electrokinetic properties of smithsonite and its floatability with anionic collector[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410:178-183. doi: 10.1016/j.colsurfa.2012.06.044

    CrossRef Google Scholar

    [10] 欧乐明, 曾维伟, 冯其明, 等.Zn2+、Cu2+对菱锌矿和石英浮选的影响及作用机理[J].有色金属(选矿部分), 2011(5):53-57.

    Google Scholar

    [11] 欧乐明, 叶家笋, 曾维伟, 等.铁离子和亚铁离子对菱锌矿和石英浮选的影响[J].有色金属(选矿部分), 2012(6):79-82.

    Google Scholar

    [12] 叶家笋. 菱锌矿与褐铁矿浮选分离的研究[D]. 长沙: 中南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10533-1012477712.htm

    Google Scholar

    [13] 朱从杰.矿泥对氧化锌矿物浮选行为的影响[J].矿产综合利用, 2005(1):7-11.

    Google Scholar

    [14] 张国范, 崔萌萌, 朱阳戈, 等.水玻璃对菱锌矿与石英浮选分离的影响[J].中国有色金属学报, 2012, 22(12):3535-3541.

    Google Scholar

    [15] 周清波. 菱锌矿与方解石浮选分离的研究[D]. 长沙: 中南大学, 2010.http://cdmd.cnki.com.cn/Article/CDMD-10533-2010188148.htm

    Google Scholar

    [16] Majid Ejtemaei, Mehdi Irannajad, Mahdi Gharabaghi. Role of dissolved mineral species in selective flotation of smithsonite from quartzusing oleate as collector[J]. International Journal of Mineral Processing, 2012, 114-117:40-47. doi: 10.1016/j.minpro.2012.09.004

    CrossRef Google Scholar

    [17] 李明晓, 刘殿文, 张文彬.矿泥对某氧化锌矿石浮选指标的影响[J].昆明理工大学学报, 2010, 35(5):7-9.

    Google Scholar

    [18] 胡熙庚.浮选理论与工艺[M].长沙:中南工业大学出版社, 1991.

    Google Scholar

    [19] 马忠臣, 孟宪瑜, 吕辉.矿泥对某氧化铅锌矿石浮选的影响及采取的技术措施[J].有色矿冶, 1999(6):14-17.

    Google Scholar

    [20] 朱从杰.微细粒褐铁矿对菱锌矿浮选的影响研究[J].有色金属(选矿部分), 2003(5):18-21.

    Google Scholar

    [21] 冉金城, 刘全军, 张治国, 等.腾冲高泥氧化锌矿选矿实验研究[J].过程工程学报, 2015(4):559-566. doi: 10.12034/j.issn.1009-606X.215202

    CrossRef Google Scholar

    [22] 王宏菊, 刘全军, 皇甫明柱, 等.难选氧化锌矿浮选过程中脱泥作业的生产实践[J].有色金属(选矿部分), 2009(5):11-13.

    Google Scholar

    [23] 李玉琼, 陈建华, 穆枭, 等.云南普洱某难处理氧化锌矿的选矿试验研究[J].金属矿山, 2009(1):81-84.

    Google Scholar

    [24] 罗仙平, 罗礼英, 杨备, 等.四川某难选低品位氧化锌矿选矿工艺试验研究[J].矿冶工程, 2012, 32(6):40-43.

    Google Scholar

    [25] 杨柳毅, 章晓林, 李明晓, 等.兰坪低品位氧化锌矿脱泥浮选新工艺试验研究[J].矿冶, 2012, 21(3):4-7.

    Google Scholar

    [26] Mehdilo.A, Irannajad. M. Z H, Arjmandfar. H. Flotation of zinc oxide ores by cationic and mixed collectors[J]. Minerals Engineering, 2012, 36-38:331-334. doi: 10.1016/j.mineng.2012.05.013

    CrossRef Google Scholar

    [27] Mehdilo.A, Irannajad. M, Zarei. H. Smithsonite flotation from zinc oxide ore using alkyl amine acetate collectors[J]. Separation Science and Technology, 2014, 49:445-457. doi: 10.1080/01496395.2013.838966

    CrossRef Google Scholar

    [28] 陈锦全, 周德炎, 魏宗武, 等.高铁泥化氧化铅锌矿的浮选试验研究[J].矿业研究与开发, 2007, 27(5):50-51.

    Google Scholar

    [29] 罗仙平, 严群, 谢明辉, 等.某氧化铅锌矿浮选工艺试验研究[J].有色金属(选矿部分), 2005(1):7-10.

    Google Scholar

    [30] Hulya Kursun. A study on the utilization of ultrasonic pretreatment in zinc flotation[J]. Separation Science and Technology, 2014, 49:2975-2980. doi: 10.1080/01496395.2014.941876

    CrossRef Google Scholar

    [31] Hulya Kursun, Ugur Ulusoy. Zinc recovery from a lead-zinc-copper ore by ultrasonically assisted column flotation[J]. Particulate Science and Technology, 2015, 33:349-356. doi: 10.1080/02726351.2014.970314

    CrossRef Google Scholar

    [32] Pereira C.A., Peres A.E.C. Reagents in calamine zinc ores flotation[J]. Minerals Engineering, 2005, 18:275-277. doi: 10.1016/j.mineng.2004.09.011

    CrossRef Google Scholar

    [33] Kashani, N. A.H, Rashchi F. Separation of oxidized zinc minerals from tailings: Influence of flotation reagents[J]. Minerals Engineering, 2008, 21:967-972.

    Google Scholar

    [34] 胡岳华, 王淀佐.氧化铅锌矿浮选的理论与实践——国外氧化铅锌矿浮选评述[J].有色矿冶, 1986(2):16-24.

    Google Scholar

    [35] Jianjun Liu, Zhenghe Xu, Jacob Masliyah. Interaction forces in bitumen extraction from oil sands[J]. Journal of Colloid and Interface Science, 2005, 287:507-520. doi: 10.1016/j.jcis.2005.02.037

    CrossRef Google Scholar

    [36] Englert A.H., Ren J.H., Masliyah., et al. Interaction forces between a deformable air bubble and a spherical particle of tuneable hydrophobicity and surface charge in aqueous solutions[J]. Journal of Colloid and Interface Science, 2012, 379:121-129. doi: 10.1016/j.jcis.2012.04.039

    CrossRef Google Scholar

    [37] Iliana G. Sedeva, Renate Fetzer, Daniel Fornasiero, et al. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements[J]. Journal of Colloid and Interface Science, 2010, 345:417-426. doi: 10.1016/j.jcis.2010.01.075

    CrossRef Google Scholar

    [38] Meijiao Deng, Zhenghe Xu, Qingxia Liu. Impact of gypsum supersaturated process water on the interactions between silica and zinc sulphide minerals[J]. Minerals Engineering, 2014, 55:172-180. doi: 10.1016/j.mineng.2013.09.017

    CrossRef Google Scholar

    [39] Serkan Kelesoglu, Sondre Volden, Murside Kes, et al. Adsorption of naphthenic acids onto mineral surfaces studied by quartz crystal microbalance with dissipation Monitoring (QCM-D)[J]. Energy&Fuel, 2012, 26:5060-5068.

    Google Scholar

    [40] Wu Dandan, Wen Shuming, Deng Jiushuai, et al. Study on the sulfidation behavior of smithsonite[J]. Applied Surface Science, 2015, 329:315-320. doi: 10.1016/j.apsusc.2014.12.167

    CrossRef Google Scholar

    [41] Dusica. R.V., Predrag. M.L., Aleksandra. A.R. Ethyl xanthate adsorption and adsorption kinetics on lead-modified galena and sphalerite under flotation conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279:96-104.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(890) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint