2023 Vol. 32, No. 1
Article Contents

LI Li-jun, HE Lian, MA Jian-sheng, ZHANG Yu-jin. ON-SITE DETERMINATION OF 20 ELEMENTS IN GEOLOGICAL SAMPLES BY ENERGY DISPERSIVE X-RAY FLUORESCENCE SPECTROMETRY[J]. Geology and Resources, 2023, 32(1): 120-126. doi: 10.13686/j.cnki.dzyzy.2023.01.015
Citation: LI Li-jun, HE Lian, MA Jian-sheng, ZHANG Yu-jin. ON-SITE DETERMINATION OF 20 ELEMENTS IN GEOLOGICAL SAMPLES BY ENERGY DISPERSIVE X-RAY FLUORESCENCE SPECTROMETRY[J]. Geology and Resources, 2023, 32(1): 120-126. doi: 10.13686/j.cnki.dzyzy.2023.01.015

ON-SITE DETERMINATION OF 20 ELEMENTS IN GEOLOGICAL SAMPLES BY ENERGY DISPERSIVE X-RAY FLUORESCENCE SPECTROMETRY

  • To improve the efficiency of mineral exploration and shorten the anomaly verification period, it is of practical significance to determine geological samples quickly in field. The energy dispersive X-ray fluorescence spectroscopy (EDXRF) is used to study the on-site determination of 20 elements such as Cu, Pb and Zn in geological samples. The uncertainty of the method is evaluated. Through performance verification of the method, the quality control indexes of all elements in the geological samples conform with the requirements of Quality Management Standard for Geological and Mineral Laboratory Testing (DZ/T 0130-2006). The comparison results of uncertainty evaluation further verify the reliability of the method. The test results of samples in field are consistent with those in laboratory, confirming the applicability of the method for anomaly verification and efficiency increasing of geochemical exploration. The method can meet the requirements of rapid batch determination of 20 elements in field geological samples.

  • 加载中
  • [1] 樊兴涛, 李迎春, 王广, 等. 车载台式能量色散X射线荧光光谱仪在地球化学勘查现场分析中的应用[J]. 岩矿测试, 2011, 30(2): 155-159.

    Google Scholar

    Fan X T, Li Y C, Wang G, et al. On-site geochemical exploration analysis by vehicle-loaded energy dispersive X-ray fluorescence spectrometer[J]. Rock and Mineral Analysis, 2011, 30(2): 155-159.

    Google Scholar

    [2] 赵恩好, 王建国, 樊兴涛, 等. 偏振激发能量色散X射线荧光光谱仪在野外矿区现场实验室的应用探讨[J]. 冶金分析, 2019, 39(4): 31-37.

    Google Scholar

    Zhao E H, Wang J G, Fan X T, et al. Discussion on the application of polarization excitation energy dispersive X-ray fluorescence spectrometer in field mining on-site laboratory[J]. Metallurgical Analysis, 2019, 39(4): 31-37.

    Google Scholar

    [3] 王洪亮, 任国兴, 马然, 等. UV-VIS现场测定海水中硝酸盐和亚硝酸盐研究进展[J]. 环境科学与技术, 2010, 33(12F): 372-374, 444.

    Google Scholar

    Wang H L, Ren G X, Ma R, et al. Research progress on in situ determination of nitrate and nitrite using UV-VIS spectrophotometry in sea water[J]. Environmental Science & Technology, 2010, 33(12F): 372-374.

    Google Scholar

    [4] 孙仓, 卢雁, 刘畅. 便携式测汞仪应急监测地表水中的汞[J]. 环境保护科学, 2014, 40(2): 104-106.

    Google Scholar

    Sun C, Lu Y, Liu C. Emergency monitoring of mercury in surface water by portable mercury analyzer[J]. Environmental Protection Science, 2014, 40(2): 104-106.

    Google Scholar

    [5] 刘晓, 袁继海, 孙东阳, 等. 便携式锂钾分析仪在钾盐资源现场勘查中的应用[J]. 地球学报, 2021, 42(4): 573-578.

    Google Scholar

    Liu X, Yuan J H, Sun D Y, et al. On-site application of portable Li-K analyzer in the exploration of potash resources[J]. Acta Geoscientia Sinica, 2021, 42(4): 573-578.

    Google Scholar

    [6] 张伊挺, 王翠翠, 樊梦丽, 等. 基于便携式近红外光谱仪的重金属离子定量分析研究[J]. 光谱学与光谱分析, 2016, 36(12): 4100-4104.

    Google Scholar

    Zhang Y T, Wang C C, Fan M L, et al. Quantitative analysis of heave mental ion based on portable NIR spectrometer[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 4100-4104.

    Google Scholar

    [7] 杨帆, 郝志红, 刘华忠, 等. 便携式能量色散X射线荧光光谱仪在新疆东天山浅钻化探异常查证中的应用[J]. 岩矿测试, 2015, 34(6): 665-671.

    Google Scholar

    Yang F, Hao Z H, Liu H Z, et al. Application of Minipal 4 portable energy dispersive X-ray fluorescence spectrometer in the verification of geochemical anomaly delineated by shallow hole drill core in eastern Tianshan[J]. Rock and Mineral Analysis, 2015, 34(6): 665-671.

    Google Scholar

    [8] 李强, 张学华. 手持式X射线荧光光谱仪测定富钴结壳样品中锰铁钴镍铜锌[J]. 岩矿测试, 2013, 32(5): 724-728.

    Google Scholar

    Li Q, Zhang X H. Determination of Mn, Fe, Co, Ni, Cu and Zn in cobalt-rich crusts by portable X-ray fluorescence spectrometer[J]. Rock and Mineral Analysis, 2013, 32(5): 724-728.

    Google Scholar

    [9] 焦距, 詹秀春, 翟磊, 等. 无外接电源富集装置-手持式XRF现场分析水体中重金属[J]. 光谱学与光谱分析, 2017, 37(1): 267-272.

    Google Scholar

    Jiao J, Zhan X C, Zhai L, et al. On-site analysis of heavy metals in water with handheld X-ray fluorescence and pre-concentration device without external power supply[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 267-272.

    Google Scholar

    [10] Weider S Z, Nittler L R, Starr R D, et al. Evidence for geochemical terranes on mercury: Global mapping of major elements with Messenger' s X-ray spectrometer[J]. Earth and Planetary Science Letters, 2015, 416: 109-120.

    Google Scholar

    [11] Escárate P, Bailo D, Guesalaga A, et al. Energy dispersive X-ray diffraction spectroscopy for rapid estimation of calcite in copper ores [J]. Minerals Engineering, 2009, 22(6): 566-571.

    Google Scholar

    [12] 张鹏, 张寿庭, 邹灏, 等. 便携式X荧光分析仪在萤石矿勘查中的应用[J]. 物探与化探, 2012, 36(5): 718-722.

    Google Scholar

    Zhang P, Zhang S T, Zou H, et al. The application of portable X-ray fluorescence analyzer to fluorite prospecting[J]. Geophysical and Geochemical Exploration, 2012, 36(5): 718-722.

    Google Scholar

    [13] 张颖, 汪虹敏, 王赛, 等. X荧光光谱仪在实验室-调查船测定海洋沉积物元素的对比研究[J]. 海洋科学进展, 2018, 36(4): 550-559.

    Google Scholar

    Zhang Y, Wang H M, Wang S, et al. Comparison of energy-dispersive X-ray fluorescence spectrometer used in the lab and on the research vessel for the determination of element concentrations in marine sediments[J]. Advances in Marine Science, 2018, 36(4): 550-559.

    Google Scholar

    [14] 蒯丽君, 樊兴涛, 詹秀春, 等. 酸消解-车载偏振能量色散X射线荧光法现场测定祁曼塔格多金属矿中高品位铜铅锌[J]. 岩矿测试, 2013, 32(4): 538-546.

    Google Scholar

    Kuai L J, Fan X T, Zhan X C, et al. On-site analysis of Cu, Pb and Zn in polymetallic ores from Qimantage area by vehicle-loaded polarized energy dispersive X-ray fluorescence spectrometer with acid digestion[J]. Rock and Mineral Analysis, 2013, 32(4): 538-546.

    Google Scholar

    [15] 殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J]. 冶金分析, 2018, 38(4): 1-10.

    Google Scholar

    Yin H M, Du Z Y, Li Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4): 1-10.

    Google Scholar

    [16] 常梅. 能量色散X射线荧光光谱仪校准方法探讨[J]. 分析仪器, 2020(1): 93-95.

    Google Scholar

    Chang M. Study on calibration method of energy dispersion X-ray fluorescence spectrometer[J]. Analytical Instrumentation, 2020(1): 93-95.

    Google Scholar

    [17] 李小莉, 谢应强, 王雪莲, 等. 熔融制样-能量色散X射线荧光光谱仪分析硅酸盐中32种组分[J]. 冶金分析, 2019, 39(7): 29-35.

    Google Scholar

    Li X L, Xie Y Q, Wang X L, et al. Determination of thirty-two components in silicate by energy dispersive X-ray fluorescence spectrometer with fusion sample preparation[J]. Metallurgical Analysis, 2019, 39(7): 29-35.

    Google Scholar

    [18] 刘菊琴, 李小莉. 波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物、水系沉积物、岩石和土壤样品中15种稀土元素[J]. 冶金分析, 2018, 38(5): 7-12.

    Google Scholar

    Liu J Q, Li X L. Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion-energy dispersion combined type X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2018, 38(5): 7-12.

    Google Scholar

    [19] 李迎春, 张磊, 周伟, 等. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析[J]. 岩矿测试, 2020, 39(6): 828-838.

    Google Scholar

    Li Y C, Zhang L, Zhou W, et al. Determination of major and minor elements in rocks, soils and sediments and complex samples by wavelength and energy dispersive X-ray fluorescence spectrometer with fusion sampling[J]. Rock and Mineral Analysis, 2020, 39(6): 828-838.

    Google Scholar

    [20] Gazulla M F, Rodrigo M, Vicente S, et al. Methodology for the determination of minor and trace elements in petroleum cokes by wavelength-dispersive X-ray fluorescence (WD-XRF)[J]. X-Ray Spectrometry, 2010, 39(5): 321-327.

    Google Scholar

    [21] 袁静, 刘建坤, 郑荣华, 等. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析[J]. 岩矿测试, 2020, 39(6): 816-827.

    Google Scholar

    Yuan J, Liu J K, Zheng R H, et al. Studies on characteristics of high-energy polarized energy-dispersive X-ray fluorescence spectrometer and determination of major and trace elements in geological samples [J]. Rock and Mineral Analysis, 2020, 39(6): 816-827.

    Google Scholar

    [22] 王祎亚, 詹秀春. X射线荧光光谱测定地质样品中27种组分分析结果不确定度的评估[J]. 光谱学与光谱分析, 2014, 34(4): 1118-1123.

    Google Scholar

    Wang Y Y, Zhan X C. The uncertainty evaluation of analytical results of 27 elements in geological samples by x-ray fluorescence spectrometry [J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 1118-1123.

    Google Scholar

    [23] 《岩石矿物分析》编委会. 岩石矿物分析[M]. 4版. 北京: 地质出版社, 2011.

    Google Scholar

    Editorial Board of Rock and Mineral Analysis. Rock and mineral analysis[M]. Beijing: Geological Publishing House, 2011. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1439) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint