2023 Vol. 32, No. 1
Article Contents

CAO Liang, YE Tang-jin, TAO Wei. RISK ANALYSIS OF TYPICAL GEOLOGICAL HAZARDS IN BATANG-LHASA SECTION OF SICHUAN-Xizang HIGHWAY[J]. Geology and Resources, 2023, 32(1): 113-119. doi: 10.13686/j.cnki.dzyzy.2023.01.014
Citation: CAO Liang, YE Tang-jin, TAO Wei. RISK ANALYSIS OF TYPICAL GEOLOGICAL HAZARDS IN BATANG-LHASA SECTION OF SICHUAN-Xizang HIGHWAY[J]. Geology and Resources, 2023, 32(1): 113-119. doi: 10.13686/j.cnki.dzyzy.2023.01.014

RISK ANALYSIS OF TYPICAL GEOLOGICAL HAZARDS IN BATANG-LHASA SECTION OF SICHUAN-Xizang HIGHWAY

More Information
  • The slope geohazard along Batang-Lhasa section of Sichuan-Xizang Highway is serious. Based on the slope disaster data collected over the years, the risk of typical slope geohazard along the section is analyzed by using several interpolation methods of geographical information system(GIS). The results show that the low, medium and high risk zones account for 78.9% of the total distance, with the whole distance of 1008 km, among which the high risk zone reaches 30.28%, and the distance of basically no risk zone is 270 km, making up 21.1%. The analysis results are reasonable and reliable through field verification.

  • 加载中
  • [1] 李建忠, 郑来林, 耿全如, 等. 西藏波密-林芝环境地质灾害及防治[J]. 沉积与特提斯地质, 2006, 26(3): 81-84, 88. doi: 10.3969/j.issn.1009-3850.2006.03.015

    CrossRef Google Scholar

    Li J Z, Zheng L L, Geng Q R, et al. Geological hazards and controlling factors along the Bomi-Nyingchi zone, Xizang[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(3): 81-84, 88. doi: 10.3969/j.issn.1009-3850.2006.03.015

    CrossRef Google Scholar

    [2] 王勇. 西藏山区公路边坡生态防护措施研究[D]. 西安: 长安大学, 2016.

    Google Scholar

    Wang Y. Ecological protection of highway slope in Xizang mountain regions[D]. Xi'an: Chang'an University, 2016.

    Google Scholar

    [3] 刘祥. 西藏草甸区高等级公路边坡防护[J]. 中国公路, 2020(4): 98-99.

    Google Scholar

    Liu X. Slope protection of high grade highway in Xizang meadow area[J]. China Highway, 2020(4): 98-99. (in Chinese)

    Google Scholar

    [4] Yin C, Li H R, Hu Z N, et al. Application of the terrestrial laser scanning in slope deformation monitoring: Taking a highway slope as an example[J]. Applied Sciences, 2020, 10(8): 2808. doi: 10.3390/app10082808

    CrossRef Google Scholar

    [5] Lee J D, Chang K T, Bhang K J, et al. Construction of 3D visualization system for dangerous slope management[J]. Proceedings of the Korea Contents Association Conference, 2018: 119-120.

    Google Scholar

    [6] Jeong J H, Kim S H, Park B S, et al. Case study on the mitigation of dangerous slope considering the value of geoheritage[J]. The Journal of Engineering Geology, 2020, 30(1): 71-84.

    Google Scholar

    [7] 王佳运, 石小亚, 罗金, 等. 黄土高原山区城镇边坡地质灾害风险分级系统——以吉县吉昌镇为例[J]. 灾害学, 2021, 36(1): 122-127. doi: 10.3969/j.issn.1000-811X.2021.01.023

    CrossRef Google Scholar

    Wang J Y, Shi X Y, Luo J, et al. Risk classification system of slope geo-hazards of mountainous town in Loess Plateau: Taking Jichang Town of Jixian County for example[J]. Journal of Catastrophology, 2021, 36(1): 122-127. doi: 10.3969/j.issn.1000-811X.2021.01.023

    CrossRef Google Scholar

    [8] 刘洪博, 佟磊, 张龙, 等. S303公路边坡崩塌灾害体发育特征及其危险性评价[J]. 中国地质灾害与防治学报, 2020, 31(4): 34-38.

    Google Scholar

    Liu H B, Tong L, Zhang L, et al. Slope collapse hazard development characteristics and risk assessment of S303 Highway[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 34-38.

    Google Scholar

    [9] 闫丽雯. 基于瑞典条分法和Bishop法的广州市白云山某边坡地质灾害危险性分析[J]. 中国金属通报, 2019(12): 106-107.

    Google Scholar

    Yan L W. Risk analysis of a slope geological hazard in Baiyun Mountain, Guangzhou based on Swedish slice method and Bishop method[J]. China Metal Bulletin, 2019(12): 106-107. (in Chinese)

    Google Scholar

    [10] 泮俊. 山区公路高边坡危险性分级及动态设计研究[D]. 西安: 长安大学, 2016.

    Google Scholar

    Pan J. Research on hazard classification and dynamic design of mountainous highway high slope[D]. Xi'an: Chang'an University, 2016.

    Google Scholar

    [11] Aslam B, Zafar A, Khalil U. Correction to: Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential[J]. Soft Computing, 2021, 25(21): 13795.

    Google Scholar

    [12] Lan M, Zhu J P, Lo S. Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides[J]. Reliability Engineering & System Safety, 2021, 215: 107851.

    Google Scholar

    [13] Zhao Z, Chen J H, Xu K H, et al. A spatial case-based reasoning method for regional landslide risk assessment[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102381.

    Google Scholar

    [14] 邹强, 崔鹏, 杨伟. G318川藏公路段泥石流危险性评价[J]. 山地学报, 2013, 31(3): 342-348.

    Google Scholar

    Zou Q, Cui P, Yang W. Hazard assessment of debris flows along G318 Sichuan-Xizang highway[J]. Journal of Mountain Science, 2013, 31(3): 342-348.

    Google Scholar

    [15] 陈洪凯, 唐红梅. 川藏公路地质灾害危险性评价[J]. 公路, 2011(9): 17-23.

    Google Scholar

    Chen H K, Tang H M. Evaluation of geological disaster fatalness along Sichuan-Xizang highway[J]. Highway, 2011(9): 17-23.

    Google Scholar

    [16] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 2版. 北京: 科学出版社, 2012: 289-290.

    Google Scholar

    Tang G A, Yang X. Geographic information system spatial analysis experiment course[M]. 2nd ed. Beijing: Science Press, 2012: 289-290. (in Chinese)

    Google Scholar

    [17] 靳远成, 赵鹏辉, 薄雾, 等. 基于无人机影像的边坡精细化建模及稳定性分析[J]. 水利与建筑工程学报, 2020, 18(6): 178-183.

    Google Scholar

    Jin Y C, Zhao P H, Bo W, et al. Refined modeling and stability analysis of slope based on UAV images[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(6): 178-183.

    Google Scholar

    [18] 汤明高, 傅涛, 张维科, 等. 西藏G318典型地质灾害成因机制及防治对策[J]. 公路交通科技, 2012, 29(5): 30-36.

    Google Scholar

    Tang M G, Fu T, Zhang W K, et al. Genetic mechanism of geohazard along national highway 318 in Xizang and prevention countermeasure [J]. Journal of Highway and Transportation Research and Development, 2012, 29(5): 30-36.

    Google Scholar

    [19] 杨志华, 吴瑞安, 郭长宝, 等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 2022, 49(2): 355-368.

    Google Scholar

    Yang Z H, Wu R A, Guo C B, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 2022, 49(2): 355-368.

    Google Scholar

    [20] 叶唐进, 谢强, 王鹰. 川藏公路藏东段边坡稳定性研究与治理评价[J]. 地质力学学报, 2019, 25(2): 233-239.

    Google Scholar

    Ye T J, Xie Q, Wang Y. Stability investigation and treatment evaluation of slopes in the eastern Xizang section of the Sichuan-Xizang highway[J]. Journal of Geomechanics, 2019, 25(2): 233-239.

    Google Scholar

    [21] Thomas A, Aryal J. Spatial analysis methods and practice: Describe-explore-explain through GIS[J]. Journal of Spatial Science, 2021, 66(3): 533-534.

    Google Scholar

    [22] Meng F A, Liang X J, Xiao C L, et al. Integration of GIS, improved entropy and improved catastrophe methods for evaluating suitable locations for well drilling in arid and semi-arid plains[J]. Ecological Indicators, 2021, 131: 108124.

    Google Scholar

    [23] Tercan E. Land suitability assessment for wind farms through best-worst method and GIS in Balikesir Province of Turkey[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101491.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1755) PDF downloads(293) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint