2024 Vol. 57, No. 5
Article Contents

PENG Suxia, GUO Yu, ZHANG Zhaowei, QUAN Xiaoqin, CHEN Bo, XIE Chunlin. 2024. The Characteristics of Granite Associated with Tin and Mineralization in Northwest China. Northwestern Geology, 57(5): 27-39. doi: 10.12401/j.nwg.2024020
Citation: PENG Suxia, GUO Yu, ZHANG Zhaowei, QUAN Xiaoqin, CHEN Bo, XIE Chunlin. 2024. The Characteristics of Granite Associated with Tin and Mineralization in Northwest China. Northwestern Geology, 57(5): 27-39. doi: 10.12401/j.nwg.2024020

The Characteristics of Granite Associated with Tin and Mineralization in Northwest China

More Information
  • Northwest China is one of superior conditions area for tin ore formation and rich mineral resources in China, but tin ore output is less than 2%, and scattered distribution and small scale in the area. Because tin is not a dominant mineral, it has not received much attention. Previous research mainly focused on the geochemical and genesis of typical deposits, lacking a summary and understanding of regional mineralization characteristics and patterns. This paper selects the granite related to tin ore as the research object. The authors put forward some new comprehension of tin prospecting by analyzing the characteristics of the granite. The paper shows that tin is not only enriched in late melt but also from mantle to crust. The more crustal material in granulite basement, it is the more favorable for tin mineralization. A-type granite has a more obvious specificity to tin mineralization. It found that granites related to tin mineralization generally have higher Sn abundance, especially the peraluminous and calc-alkaline granites formed in the environment of continental collision, oceanic or crust subduction and ocean-continent transition are more conducive to tin enrichment. The high Sn abundance is also an essential factor for tin mineralization. For example, in the East Junggar and Tianshan regions, the tin abundance is reached 7×10−6, higher than the crustal tin abundance value of (1.7×10−6). Tin ore is finally formed at a certain temperature, continuous mobilized, migrated, enriched, and magmatic crystallization differentiation. Based on the above views, the paper describes the characteristics of the 6 tin metallogenic belts in Northwest China, which are considered to be tin prospecting potential area.

  • 加载中
  • [1] 曹华文. 滇西腾-梁锡矿带中-新生代岩浆岩演化与成矿关系研究[D]. 北京: 中国地质大学(北京), 2015, 1−349.

    Google Scholar

    CAO Huawen. Research on Mesozoic-Cenozoic magmatic evolution and its relation with metallogeny in Tengchong-Lianghe tin ore belt, western Yunnan[D]. Beijing: China University of Geosciences (Beijing): 2015, 1−349.

    Google Scholar

    [2] 陈郑辉, 王登红, 盛继福, 等. 中国锡矿成矿规律概要[J]. 地质学报, 2015, 896): 10261037.

    Google Scholar

    CHEN Zhenghui, WANG Denghong, SHENG Jifu, et al. The Metallogenic Regularity of Tin Deposits in China[J]. Acta Geologica Sinica, 2015, 896): 10261037.

    Google Scholar

    [3] 陈骏, 王汝成, 周建平, 等. 锡的地球化学[M]. 南京: 南京大学出版社, 2000, 116−154.

    Google Scholar

    CHEN Jun, WANG Rucheng, ZHOU Jianping, et al. Geochemistry of Tin[M]. Nanjing: Nanjing University Press, 2000, 116−154.

    Google Scholar

    [4] 高晓峰, 校培喜, 谢从瑞, 等. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地质通报, 2010, 297): 10011008.

    Google Scholar

    GAO Xiaofeng, XIAO Peixi, XIE Congrui, et al. Zircon LA-ICP-MS U-Pb dating and geological significance of Bashierxi granite in the eastern Kunlun area[J]. Geological Bulletin of China, 2010, 297): 10011008.

    Google Scholar

    [5] 高永宝, 李文渊. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩: 岩石学、年代学、地球化学及岩石成因[J]. 地球化学, 2011, 404): 324336.

    Google Scholar

    GAO Yongbao, LI Wenyuan. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantage, NW China: Constraints from petrology, chronology and geochemistry[J]. Geochimica, 2011, 404): 324336.

    Google Scholar

    [6] 蒋少涌, 赵葵东, 姜海, 等. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 2020, 6533): 37303745.

    Google Scholar

    JIANG Shaoyong, ZHAO Kuidong, JIANG Hai, et al. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin, 2020, 6533): 37303745.

    Google Scholar

    [7] 蒋少涌, 赵葵东, 姜耀辉, 等. 华南与花岗岩有关的一种新类型的锡成矿作用: 矿物化学、元素和同位素地球化学证据[J]. 岩石学报, 2006, 2210): 25092516. doi: 10.3321/j.issn:1000-0569.2006.10.011

    CrossRef Google Scholar

    JIANG Shaoyong, ZHAO Kuidong, JIANG Yaohui, et al. New type of tin mineralization related to granite in South China: evidence from mineral chemistry, element and isotope geochemistry[J]. Acta Petrologica Sinica, 2006, 2210): 25092516. doi: 10.3321/j.issn:1000-0569.2006.10.011

    CrossRef Google Scholar

    [8] 兰天佑, 岳书仓. 新疆喀孜别克锡矿床地质地球化学研究[J]. 合肥工业大学学报(自然科学版), 1994, 171): 160164.

    Google Scholar

    LAN Tianyou, YUE Shucang. Studies on geology and geochemistry of the KEZBIKE tin deposit in Xinjiang[J]. Journal of Hefei University of Technology, 1994, 171): 160164.

    Google Scholar

    [9] 李聪, 梁婷, 陈永康, 等. 青海省锡矿成矿特征及成矿规律[J]. 地质与资源, 2019, 286): 526534.

    Google Scholar

    LI Cong, LIANG Ting, CHEN Yongkang, et al. Metallogenic characteristics and regularities of tin deposits in qinghai province[J]. Geology and Resources, 2019, 286): 526534.

    Google Scholar

    [10] 李大新, 丰成友, 周安顺, 等. 东昆仑祁漫塔格西段白干湖超大型钨锡矿田地质特征及其矿化交代岩分类[J]. 矿床地质, 2013, 321): 3754. doi: 10.3969/j.issn.0258-7106.2013.01.003

    CrossRef Google Scholar

    LI Daxin, FENG Chengyou, ZHOU Anshun, et al. Geological characteristics and mineralization-metasomatite classification of superlarge Baiganhu tungsten-tin orefield in western Qimantag, East Kunlun Mountains[J]. Mineral Deposits, 2013, 321): 3754. doi: 10.3969/j.issn.0258-7106.2013.01.003

    CrossRef Google Scholar

    [11] 李国臣, 丰成友, 王瑞江等. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报, 2012a, 332): 216226.

    Google Scholar

    LI Guochen, FENG Chengyou, WANG Ruijiang, et al. SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang[J]. Acta Geoscientica Sinica, 2012a, 332): 216226.

    Google Scholar

    [12] 李国臣, 丰成友, 王瑞江, 等. 新疆若羌县柯可卡尔德钨锡矿床地质特征与流体包裹体研究[J]. 地质学报, 2012b, 861): 209218.

    Google Scholar

    LI Guochen, FENG Chengyou, WANG Ruijiang, et al. Study on Geological Characteristics and Fluid Inclusion of the Kekekaerde W-Sn Deposit in Ruoqiang County, Xinjiang[J]. Acta Geologica Sinica, 2012b, 861): 209218.

    Google Scholar

    [13] 黎彤, 袁怀雨, 吴胜昔. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J]. 大地构造与成矿学, 1998, 221): 2934.

    Google Scholar

    LI Tong, YUAN Huaiyu, WU Shengxi. On the average chemical composition of granitoids in china and the world[J]. Geotectonica et Metallogenia, 1998, 221): 2934.

    Google Scholar

    [14] 林锦富, 喻亨祥, 吴昌志, 等. 东准噶尔萨北锡矿SHRIMP 锆石U-Pb测年及地质意义[J]. 中国地质, 2008, 356): 11971205. doi: 10.3969/j.issn.1000-3657.2008.06.016

    CrossRef Google Scholar

    LIN Jinfu, YU Hengxiang, WU Changzhi, et al. Zircon SHRIMP U-Pb dating and geological implication of the Sabei Tin ore-deposit from Eastern Junggar of Xinjiang, China[J]. Geology in China, 2008, 356): 11971205. doi: 10.3969/j.issn.1000-3657.2008.06.016

    CrossRef Google Scholar

    [15] 刘家远, 喻亨祥, 吴郭泉. 新疆北部卡拉麦里富碱花岗岩带的碱性花岗岩与锡矿[J]. 有色金属矿产与勘查, 1997, 63): 129135.

    Google Scholar

    LIU Jiayuan, YU Hengxiang, WU Guoquan. Alkali granites and tin deposits of the Kalamaili area,northern xinjiang[J]. Geological exploration for non-ferrous metals, 1997, 63): 129135.

    Google Scholar

    [16] 刘义茂, 王昌烈, 胥友志, 等. 柿竹园超大型钨多金属矿床的成矿条件与成矿模式[J]. 中国科学(D辑), 1998, 28Suppl): 4956.

    Google Scholar

    LIU Yimao, WANG Changlie, XU Youzhi, et al. Metallogenic condition and model of the giant Shizhuyuan tungsten polymetallic deposit[J]. Science in China (Series D), 1998, 28Suppl): 4956.

    Google Scholar

    [17] 刘子峰, 崔雅茹, 魏微. 新疆东昆仑白干湖钨锡矿床地球化学特征[J]. 吉林地质, 2007, 264): 5460. doi: 10.3969/j.issn.1001-2427.2007.04.010

    CrossRef Google Scholar

    LIU Zifeng, CUI Yaru, WEI Wei. The geochemical characteristics of the Baiganhu W Sn deposit, Dongkunlun, Xinjiang[J]. Jilin Geology, 2007, 264): 5460. doi: 10.3969/j.issn.1001-2427.2007.04.010

    CrossRef Google Scholar

    [18] 路远发. 赛什塘-日龙沟矿带成矿地球化学特征及矿床成因[J]. 西北地质, 1990, (3): 2026.

    Google Scholar

    [19] 马慧英, 刘继顺, 尹利君, 等. 青海省都兰小卧龙锡、铁、钨多金属矿地质特征及找矿标志[J]. 矿产与地质, 2009, 234): 311315.

    Google Scholar

    MA Huiying, LIU Jishun, YIN Lijun, et al. Geological feature and exploration sign of Xiaowolong tin-iron-tungsten polymeallic deposit in Dulanxian in Qinghai province[J]. Mineral Resources and Geology, 2009, 234): 311315.

    Google Scholar

    [20] 毛景文, 谢桂青, 袁顺达, 等. 环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望[J]. 岩石学报, 2018, 349): 25012517.

    Google Scholar

    MAO Jingwen, XIE Guiqing, YUAN Shunda, et al. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts[J]. Acta Petrologica Sinica, 2018, 349): 25012517.

    Google Scholar

    [21] 苏玉平, 唐红峰, 刘丛强, 等. 新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究[J]. 岩石矿物学杂志, 2006, 253): 175184.

    Google Scholar

    SU Yuping, TANG Hongfeng, LIU Congqiang, et al. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang[J]. Acta Petrologica et Mineralogica, 2006, 253): 175184.

    Google Scholar

    [22] 隋清霖, 祝红丽, 孙赛军, 等. 锡的地球化学性质与华南晚白垩世锡矿成因[J]. 岩石学报, 2020, 361): 2334. doi: 10.18654/1000-0569/2020.01.04

    CrossRef Google Scholar

    SUI Qinglin, ZHU Hongli, SUN Saijun, et al. The geochemical behavior of tin and Late Cretaceous tin mineralization in South China[J]. Acta Petrologica Sinica, 2020, 361): 2334. doi: 10.18654/1000-0569/2020.01.04

    CrossRef Google Scholar

    [23] 唐红峰, 屈文俊, 苏玉平, 等. 新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约[J]. 岩石学报, 2007, 238): 19891997.

    Google Scholar

    TANG Hongfeng, QU Wenjun, SU Yuping, et al. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang: constraint from isotopic ages[J]. Acta Petrologica Sinaca, 2007, 238): 19891997.

    Google Scholar

    [24] 王永和, 高晓峰, 孙吉明, 等. 西北地区大地构造环境与成矿[M]. 武汉: 中国地质大学出版社, 2020, 1−281.

    Google Scholar

    [25] 王移生. 青海日龙沟锡-多金属矿床地质特征及成矿作用[J]. 西北地质, 1990, 232): 4348.

    Google Scholar

    [26] 吴宏恩, 杨高学, 李永军, 等. 东准噶尔锡矿北花岗斑岩地球化学特征[J]. 新疆地质, 2008, 264): 325329. doi: 10.3969/j.issn.1000-8845.2008.04.001

    CrossRef Google Scholar

    WU Hongen, YANG Gaoxue, LI Yongjun, et al. Characteristic of Geochemistry of the Xikuangbei granite-porphyry in Kalamaili area, east junggar[J]. Xinjiang Geology, 2008, 264): 325329. doi: 10.3969/j.issn.1000-8845.2008.04.001

    CrossRef Google Scholar

    [27] 肖庆辉, 邓晋福, 马大铨, 等, 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002, 12−52.

    Google Scholar

    [28] 杨富全, 邓会娟, 夏浩东, 等. 新疆阿图什彻依布拉克锡多金属矿点地质特征[J]. 新疆地质, 2003, 214): 426432.

    Google Scholar

    YANG Fuquan, DENG Huijuan, XIA Haodong, et al. Geological characteristics of Qieyibulake tin-polymetallic ore spot in Atushi city, Xinjiang[J]. Xinjiang Geology, 2003, 214): 426432.

    Google Scholar

    [29] 杨合群. 钨锡矿与地球演化的关系[J]. 西北地质, 2007, 404): 108108. doi: 10.3969/j.issn.1009-6248.2007.04.018

    CrossRef Google Scholar

    [30] 张子敏, 马汉峰, 蔡根庆. 南天山独山锡矿床的成矿特征及成矿模式[J]. 新疆地质, 2001, 191): 4953. doi: 10.3969/j.issn.1000-8845.2001.01.009

    CrossRef Google Scholar

    ZHANG Zimin, MA Hanfeng, CAI Genqing. Mineralization characteristics and metallogenetic model of Dushan Sn deposit in the eastern part of the south Tianshan mountain[J]. Xinjiang Geology, 2001, 191): 4953. doi: 10.3969/j.issn.1000-8845.2001.01.009

    CrossRef Google Scholar

    [31] 朱金初, 陈骏, 王汝成, 等. 南岭中西段燕山早期北东向含锡钨A型花岗岩带[J]. 高校地质学报, 2008, 144): 474484. doi: 10.3969/j.issn.1006-7493.2008.04.002

    CrossRef Google Scholar

    ZHU Jinchu, CHEN Jun, WANG Rucheng, et al. Early Yanshanian NE Trending Sn/W-Bearing A-Type Granites in the Western-Middle Part of the Nanling Mts Region[J]. Geological Journal of China Universities, 2008, 144): 474484. doi: 10.3969/j.issn.1006-7493.2008.04.002

    CrossRef Google Scholar

    [32] 周建厚, 丰成友, 李大新, 等. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 2015, 318): 22772293.

    Google Scholar

    ZHOU Jianhou, FENG Chengyou, LI Daxin, et al. Petrology, geochronology and geochemistry of metallogenetic granite in Baiganhu W-Sn deposit, East Kunlun[J]. Acta Petrologica Sinica, 2015, 318): 22772293.

    Google Scholar

    [33] Blevin P L , Chappell BW. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia: The metallogeny of I- and S-type granites[J]. Economic Geology, 1995, 906): 16041619. doi: 10.2113/gsecongeo.90.6.1604

    CrossRef Google Scholar

    [34] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 971−2): 129. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    [35] Boztug D, Harlavan Y, Arehart G, et al. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divrigi-Sivas region, eastern-central Anatolia, Turkey[J]. Lithos, 2007, 971−2): 193218. doi: 10.1016/j.lithos.2006.12.014

    CrossRef Google Scholar

    [36] Chen Y X, Li H, Sun W D, et al. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution[J]. Lithos, 2016, 266−267: 435452. doi: 10.1016/j.lithos.2016.10.010

    CrossRef Google Scholar

    [37] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 802): 189200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [38] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 207): 641644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [39] Jiang Y H, Jiang S Y, Zhao K D, et al. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting[J]. Geological Magazine, 2006, 1434): 457474. doi: 10.1017/S0016756805001652

    CrossRef Google Scholar

    [40] Jochum K P, Hofmann A W, Seufert H M. Tin in mantle-derived rocks: Constraints on Earth evolution[J]. Geochimica et Cosmochimica Acta, 1993, 5715): 35853595. doi: 10.1016/0016-7037(93)90141-I

    CrossRef Google Scholar

    [41] Kamilli R J, Kimball B E, Carlin J F Jr. Tin. In: Schulz K J, DeYoung J H Jr, Seal R R , Bradley D C (eds.). Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply[M]. US: USGS, 2017, S1−S53.

    Google Scholar

    [42] Lehmann B. Metallogeny of Tin[M]. Berlin: Springer, 1990, 1−210.

    Google Scholar

    [43] Li H, Palinkas L A, Watanabe K, et al. Petrogenesis of Jurassic A-type granites associated with Cu-Mo and W-Sn deposits in the central Nanling region, South China: Relation to mantle upwelling and intra-continental extension[J]. Ore Geology Reviews, 2018, 92: 449462. doi: 10.1016/j.oregeorev.2017.11.029

    CrossRef Google Scholar

    [44] Linnen R L, Pichavant M, Holtz F. The combined effects of fO2 and melt composition on SnO2solubility and tin diffusivity in haplogranitic melts[J]. Geochimica et Cosmochimica Acta, 1996, 6024): 49654976. doi: 10.1016/S0016-7037(96)00295-5

    CrossRef Google Scholar

    [45] Liu P, Mao J W, Santosh M, et al. Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie'shan W-Sn deposit in the eastern Guangdong Province, SE China: Implications for W-Sn mineralization and geodynamic setting[J]. Lithos, 2018, 300−301: 330347. doi: 10.1016/j.lithos.2017.12.015

    CrossRef Google Scholar

    [46] Mania P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101: 635643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [47] Mao J W, Cheng Y B, Chen M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 483): 267294. doi: 10.1007/s00126-012-0446-z

    CrossRef Google Scholar

    [48] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 254): 956983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [49] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 224): 247263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [50] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 164.

    Google Scholar

    [51] Romer R L, Kroner U. Phanerozoic tin and tungsten mineralization: Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 2016, 31: 6095. doi: 10.1016/j.gr.2015.11.002

    CrossRef Google Scholar

    [52] Sato K, Vrublevsky A A, Rodionov S M, et al. Mid-cretaceous episodic Magmatism and tin mineralization in Khingan-Okhotsk volcano-plutonic belt, Far East Russia[J]. Resource Geology, 2002, 521): 114. doi: 10.1111/j.1751-3928.2002.tb00112.x

    CrossRef Google Scholar

    [53] Schwartz M O, Rajah S S, Askury A K, et al. The southeast Asian tin belt[J]. Earth-Science Reviews, 1995, 382−4): 95293. doi: 10.1016/0012-8252(95)00004-T

    CrossRef Google Scholar

    [54] Shu X J, Wang X L, Sun T, et al. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: Implications for petrogenesis and W-Sn mineralization[J]. Lithos, 2011, 1273−4): 468482. doi: 10.1016/j.lithos.2011.09.019

    CrossRef Google Scholar

    [55] Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3): 261−280.

    Google Scholar

    [56] Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians[J]. Journal of Petrology, 1996, 376): 14631489. doi: 10.1093/petrology/37.6.1463

    CrossRef Google Scholar

    [57] Yan Q H, Wang H, Qiu Z W, et al. Origin of Early Cretaceous A-type granite and related Sn mineralization in the Sanjiaowo deposit, eastern Guangdong, SE China and its tectonic implication[J]. Ore Geology Reviews, 2018, 93: 6080. doi: 10.1016/j.oregeorev.2017.12.014

    CrossRef Google Scholar

    [58] Yao Y, Chen J, Lu J J, et al. Geology and genesis of the Hehuaping magnesian skarn-type cassiterite-sulfide deposit, Hunan Province, southern China[J]. Ore Geology Reviews, 2014, 58: 163184. doi: 10.1016/j.oregeorev.2013.10.012

    CrossRef Google Scholar

    [59] Zhang L P, Zhang R Q, Hu Y B, et al. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives[J]. Lithos, 2017, 290−291: 253268. doi: 10.1016/j.lithos.2017.08.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1379) PDF downloads(153) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint