2025 Vol. 58, No. 1
Article Contents

LIU Xiangdong, HUANG Honglin, LIU Xingyu, SUN Jianwei, JIA Xu, ZHAO Xingzhi, ZHANG Xuhuang, CHENG Xianda, SUN Yake. 2025. Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example. Northwestern Geology, 58(1): 300-314. doi: 10.12401/j.nwg.2023194
Citation: LIU Xiangdong, HUANG Honglin, LIU Xingyu, SUN Jianwei, JIA Xu, ZHAO Xingzhi, ZHANG Xuhuang, CHENG Xianda, SUN Yake. 2025. Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example. Northwestern Geology, 58(1): 300-314. doi: 10.12401/j.nwg.2023194

Study on the Starting Characteristics of Mine Debris Flow Based on Flume Test: Take the Kangshan Gold Mining Area in Luanchuan County as an example

More Information
  • Mine debris flow is a typical anthropogenic debris flow formed by the evolution of waste rock and slag generated by large-scale mining of mineral resources, which has the characteristics of frequency, human nature, pollution, controllability, and so on. In order to further explore the influence and control of factors such as bottom bed slope, flushing flow and particle gradation on the start-up process of debris flow and the relationship between the factors, based on the principle of similarity, the scale structure is used to carry out flume Test with the waste rock slag pile produced by mining in Kangshan gold mining area in Luanchuan County, Henan Province. The changes of pore water pressure and water content during the formation of mine debris flow were recorded by sensors, and the phenomenon of slag initiation forming debris flow was observed with high-definition cameras. The test shows that the mine debris flow is mainly started in three ways: top erosion type, fluidization type, and top erosion fluidization type; the critical pore water pressure of the debris flow is negatively correlated with the slope of the bottom bed, and the relationship with the change of fine particle content is not obvious; when the gradation and slope are constant, as the flushing flow continues to increase, the critical water volume of the debris flow at the start of the debris flow shows, and there is a flushing flow rate that is most conducive to slag starting; The flushing flow rate and gradation are certain. The larger the slope, the easier it is for slag to start. The slope and flushing flow are certain, and the fine particle content is 30.36%. Slag is the easiest to start. The research results further enrich the mechanism research of mine debris flow initiation, and can provide reference for early warning, prevention and ecological restoration of mine debris flow.

  • 加载中
  • [1] 曹琰波. 矿渣型泥石流起动机理试验研究[D]. 西安: 长安大学, 2008.

    Google Scholar

    CAO Yanbo. Experimental Study on Starting Mechanism of Slag Debris Flow [D]. Xi’an: Chang ’an University, 2008.

    Google Scholar

    [2] 丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(3): 209−216.

    Google Scholar

    CONG Kai, LI Ruidong, BI Yuanhong. Benefite Valuation of Debris Flow Control Engineering based on the FLO-2D Model[J]. Northwestern Geology,2019,52(3):209−216.

    Google Scholar

    [3] 费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004.

    Google Scholar

    FEI Xiangjun, SHU Anping. Mechanism of Debris Flow Movement and Disaster Prevention[M]. Beijing: Tsingh-ua University Publishing House, 2004.

    Google Scholar

    [4] 黄家华, 冯文凯. 台风暴雨矿渣型泥石流形成机制与动力特征——以兴宁乌石坑沟泥石流为例[J]. 地质论评, 2023, 69(4): 1387−1397.

    Google Scholar

    HUANG Jiahua, FENG Wenkai. Formation Mechanism and Dynamic Characteristics of Mine-Slag Debris Flow in Typhoon Rainstorm: Take Wushikeng Gully in Xingning as an Example[J]. Geological Review,2023,69(4):1387−1397.

    Google Scholar

    [5] 洪磊, 马润勇, 章晓余. 青海加吾矿区玛日当沟泥石流启动机理研究[J]. 工程地质学报, 2017, 25(2): 472−479.

    Google Scholar

    HONG Lei, MA Runyong, ZHANG Xiaoyu. Starting Mechanism of Debris Flow at Maridang Gully in Jiawu Gold Mine in Qinghai Tibetan Plateau[J]. Journal of Engineering Geology,2017,25(2):472−479.

    Google Scholar

    [6] 康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004: 56–59.

    Google Scholar

    KANG Zhicheng, LI Chuofen, MA Ainai, et al. Research on Debris Flow in China[M]. Beijing: Science Press, 2004: 56–59.

    Google Scholar

    [7] 吕学军, 倪化勇, 徐如阁等. 四川峨边县蒋沟矿渣侵蚀泥石流成因与特征[J]. 水土保持研究, 2011, 18(03): 83−87.

    Google Scholar

    LV Xuejun, NI Huayong, XU Ruge, et al. Formation and Characteristics of Mine-Slag Debris Flow from Jianggou Ravine in Ebian County Sichuan Province[J]. Research of Soil and Water Conservation,2011,18(03):83−87.

    Google Scholar

    [8] 李晓晨. 矿山排土场泥石流形成机理及其防治对策[J]. 化工矿物与加工, 2014, 43(5): 37−39.

    Google Scholar

    LI Xiaochen. The Formation Mechanism of Debris Flow in Mine Dumps and its Prevention and Control Strategies[J]. Industrial Minerals & Sprocessing,2014,43(5):37−39.

    Google Scholar

    [9] 李宁, 唐川, 龚凌枫, 等. 急陡沟道泥石流起动特征模型试验研究——以汶川县福堂沟为例[J]. 地质学报, 2020, 94(2): 634−647.

    Google Scholar

    LI Ning, TANG Chuan, GONG Lingfeng, et al. An Experimental Study of Starting Characteristics of Steep Channel Debris Flow: A Case Study of the Futang Gully in the Wenchuan County[J]. Acta Geologica Sinica,2020,94(2):634−647.

    Google Scholar

    [10] 李书钦, 高建恩, 邵辉, 等. 选沙对水力侵蚀比尺模拟试验侵蚀过程相似的影响[J]. 水土保持学报, 2009, 23(3): 6−10.

    Google Scholar

    LI Shuqin, GAO Jian’en, SHAO Hui, et al. Influence of Sand Selection on Erosion Process in Hydraulic Erosion Scale Simulation Test[J]. Journal of Soil and Water Conservation,2009,23(3):6−10.

    Google Scholar

    [11] 林斌, 张友谊, 罗珂, 等. 沟道松散物质起动模型试验及冲出量预测——四川省以北川青林沟为例[J]. 人民长江, 2019, 50(5): 113−118+126.

    Google Scholar

    LIN Bin, ZHANG Youyi, LUO Ke, et al. Model Test of Channel Loose Material Starting and Prediction of Rush Amount: A Case Study of Qinglin Gully in the Beichuan County, Sichuan Province[J]. People's Changjiang,2019,50(5):113−118+126.

    Google Scholar

    [12] 刘兴荣, 崔鹏, 王飞, 等. 不同粒径级配条件下工程弃渣泥石流启动机理研究[J]. 工程地质学报, 2018, 26(6): 1593−1599.

    Google Scholar

    LIU Xingrong, CUI Peng, WANG Fei, et al. Study on the Threshold Motion Mechanism of Engineering Slag Debris Flow with Different Particle Size Grading Conditions[J]. Journal of Engineering Geology,2018,26(6):1593−1599.

    Google Scholar

    [13] 罗阳. 攀枝花徐家沟矿渣型泥石流起动机理及防治对策研究[D]. 成都: 成都理工大学, 2018.

    Google Scholar

    LUO Yang. Research on Starting Mechanism and Prevention Countermeasures of Slag Debris Flow in Xujia Gully, Panzhihua [D]. Chengdu:Chengdu University of Technology, 2018.

    Google Scholar

    [14] 孟华君, 姜元俊, 张向营. 基于模型试验的震区沟道泥石流阈值研究[J]. 人民黄河, 2017, 39(7): 80−85+95.

    Google Scholar

    MENG Huajun, JIANG Yuanjun, ZHANG Xiangying. Study on Threshold of Debris Flow in Seismic Zone Based on Model Test[J]. People’s Yellow River,2017,39(7):80−85+95.

    Google Scholar

    [15] 倪化勇, 唐川. 中国泥石流起动物理模拟试验研究进展[J]. 水科学进展, 2014, 25(04): 606−613.

    Google Scholar

    NI Huayong, TANG Chuan. Advances in the Physical Simulation Experiment on Debris Flow Initiation in China[J]. Advances in Water Science,2014,25(04):606−613.

    Google Scholar

    [16] 乔建平, 李明俐, 杨宗佶, 等. 基于模型试验的泥石流坡面物源启动预警模型[J]. 水科学进展, 2018, 29(1): 64−72.

    Google Scholar

    QIAO Jianping, LI Mingli, YANG Zongji, et al. Early Warning Model of Debris Flow Slope Source Based on Model Test[J]. Progress in Water Science,2018,29(1):64−72.

    Google Scholar

    [17] 唐亚明, 武立, 冯凡, 等. 泥石流风险减缓措施及经济决策——以山西吉县城北沟为例[J]. 西北地质, 2021, 54(4): 227−238.

    Google Scholar

    TANG Yaming, WU Li, FENG Fan, et al. Risk Mitigation Measures and Economic Decicions on Debris Flow: Taking Begou of Jixin County, Shanxi Province as an Example[J]. Northwestern Geology,2021,54(4):227−238.

    Google Scholar

    [18] 王永清, 宋卫东, 杜翠凤, 等. 金属矿山井下泥石流发生机理分析[J]. 金属矿山, 2006(8): 62−67.

    Google Scholar

    WANG Yongqing, SONG Weidong, DU Cuifeng, et al. Mechanism Analysis of Mud-Rock Flow Occurrence in Underground Metal Mines[J]. Metal Mine,2006(8):62−67.

    Google Scholar

    [19] 王锴, 朱涛, 苏生瑞, 等. 颗粒级配对矿渣型泥石流启动影响的机理研究[J]. 河北工程大学学报(自然科学版), 2019, 36(4): 90−97.

    Google Scholar

    WANG Kai, ZHU Tao, SU Shengrui, et al. The Influence Mechanism of Grain Gradation on Initiation of Slag Type Debris Flows[J]. Journal of Hebei University of Engineering (Natural Science Edition),2019,36(4):90−97.

    Google Scholar

    [20] 王协康, 方铎. 泥石流模型试验相似律分析[J]. 四川大学学报(工程科学版), 2000(3): 9−12.

    Google Scholar

    WANG Xiekang, FANG Duo. Similarity Law Analysis of Debris Flow Model Test[J]. Journal of Sichuan University (Engineering Science Edition),2000(3):9−12.

    Google Scholar

    [21] 徐友宁, 曹琰波, 张江华, 等. 基于人工模拟试验的小秦岭金矿区矿渣型泥石流起动研究[J]. 岩石力学与工程学报, 2009, 28(7): 1388−1395.

    Google Scholar

    XU Youning, CAO Yanbo, ZHANG Jianghua, et al. Research on Starting of Mine Debris Flow based on Artificial Simulation Expeiument in Xiao Qingling Gold Ore Area[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1388−1395.

    Google Scholar

    [22] 徐友宁, 何芳, 袁汉春, 等. 中国西北地区矿山环境地质问题调查与评价[M]. 北京: 地质出版社, 2006.

    Google Scholar

    XU Youning, HE Fang, YUAN Hanchun, et al. Investigation and Evaluation of Mine Environmental Geology in Northwest China[M]. Beijing: Geological Publishing House, 2006.

    Google Scholar

    [23] 杨敏, 徐友宁. 小秦岭金矿区矿渣型泥石流成因机理及防治对策[M]. 北京: 冶金工业出版社, 2021.

    Google Scholar

    YANG Min, XU Youning. Formation Mechanism and Prevention Countermeasures of Slag Debris Flow in Xiaoqinling Gold Ore Area[M]. Beijing: Metallurgical Industry Press, 2021.

    Google Scholar

    [24] 张丽萍, 唐克丽. 矿山泥石流[M]. 北京: 地质出版社, 2001: 1−9.

    Google Scholar

    ZHANG Liping, TANG Keli. Mine Debris Flow[M]. Beijing: Geological Publishing House, 2001: 1−9.

    Google Scholar

    [25] Berti M, Simoni A. Experimental evidences and numerical modelling of debris flow initiated by channel runoff[J]. Landslides,2005,2(3):171−182. doi: 10.1007/s10346-005-0062-4

    CrossRef Google Scholar

    [26] Gregoretti C, Fontana D G. The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff[J]. Hydrol Process,2008,22(13):2248−2263. doi: 10.1002/hyp.6821

    CrossRef Google Scholar

    [27] Hungr O, Dawson R F, Kent A, et al. Rapid flow slides of coal mine waste in British Columbia, Canada[A]. In: Evans S G, DeCraf J V (eds.). Catastrophic landslides: Effects, occur-rence and mechanisms: Boulder, Colorado[M]. Geological Society of America Reviews in Engineering Geology,2002,15:191−208.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)

Tables(8)

Article Metrics

Article views(181) PDF downloads(43) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint