2025 Vol. 58, No. 1
Article Contents

ZHONG Hongwei, QIN Pengfei, LU Zaiguang, ZHANG Ying. 2025. Evaluation on Grouting Reinforcement Effect of Water-rich Sand Tunnel:Take the Sandy Tunnel of Zhengzhou Metro Line 7 as An Example. Northwestern Geology, 58(1): 315-322. doi: 10.12401/j.nwg.2023172
Citation: ZHONG Hongwei, QIN Pengfei, LU Zaiguang, ZHANG Ying. 2025. Evaluation on Grouting Reinforcement Effect of Water-rich Sand Tunnel:Take the Sandy Tunnel of Zhengzhou Metro Line 7 as An Example. Northwestern Geology, 58(1): 315-322. doi: 10.12401/j.nwg.2023172

Evaluation on Grouting Reinforcement Effect of Water-rich Sand Tunnel:Take the Sandy Tunnel of Zhengzhou Metro Line 7 as An Example

More Information
  • In the increasingly complex and harsh geological environment, the quality requirements of grouting reinforcement are getting higher and higher. It is of great theoretical significance and research value to establish a scientific and reasonable grouting effect evaluation system. Aiming at the grouting effect detection methods widely used in projects such as grouting amount accounting method, inspection hole analysis method, P-Q-t curve method and geophysical detection method, the hierarchical evaluation system is established by extracting the primary and secondary influencing factors, and the mathematical model for grouting effect evaluation is built based on expert opinions and actual working conditions; Then, based on the basic principle of fuzzy mathematics, the weight vector is quantified as the weight of evaluation factors, and the mathematical expression of fuzzy phenomenon is realized through matrix operation, so as to complete the accurate evaluation of grouting effect in sandy soil tunnels; Finally, combined with the sand tunnel of Zhengzhou Metro Line 7, through the comprehensive analysis of fuzzy evaluation, it is considered that the grouting effect grade is good. During the actual excavation of the tunnel, there is no hydrological and geological interference in any form, which indicates that the evaluation method is scientific and efficient and can provide guidance or reference for other engineering construction.

  • 加载中
  • [1] 陈湘生, 付艳斌, 吕桂阳, 等. 基于小孔扩张弹塑性理论的注浆起始劈裂压力研究[J]. 中国公路学报, 2020, 33(12): 154-163

    Google Scholar

    CHEN Xiangsheng, FU Yanbin, LV Guiyang, et al. Study on Initial Fracture Pressure of Grouting Based on the Elastic-plastic Theory of Cavity Expansion[J]. China Journal of Highway and Transport, 2020, 33(12): 154-163.

    Google Scholar

    [2] 程少振, 陈铁林, 郭玮卿. 土体劈裂注浆过程的数值模拟及浆脉形态影响因素分析[J]. 岩土工程学报, 2019, 41(3): 1667-1676 doi: 10.11779/CJGE201903010

    CrossRef Google Scholar

    CHENG Shaozhen, CHEN Tielin, GUO Weiqing. Numerical Simulation of Fracture Grouting and Analysis of Influencing Factors of Grout Vein Morphology[J]. Journal of Geotechnical Engineering, 2019, 41(3): 1667-1676. doi: 10.11779/CJGE201903010

    CrossRef Google Scholar

    [3] 邓聚龙. 灰色系统基本方法(第5版)[M]. 武汉: 华中科技大学出版社, 2016

    Google Scholar

    DENG Julong. Basic methods of grey system(5th ed.)[M]. Wuhan: Huazhong University of Science and Technology Press, 2016.

    Google Scholar

    [4] 贾杰, 覃礼貌, 于振涛, 等. 某艰险山区铁路隧道岩溶发育特征及涌突水危险性评价[J]. 西北地质, 2023, 56(3): 258-267

    Google Scholar

    JIA Jie, QIN Limao, YU Zhentao, et al. Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area[J]. Northwestern Geology, 2023, 56(3): 258-267.

    Google Scholar

    [5] 李培楠, 石来, 李晓军, 等. 盾构隧道同步注浆纵环向整体扩散理论模型[J]. 同济大学学报(自然科学版), 2020, 48(5): 629-637 doi: 10.11908/j.issn.0253-374x.19257

    CrossRef Google Scholar

    LI Peinan, SHI Lai, LI Xiaojun, et al. Theoretical Model of Synchronous Grouting Longitudinal Circumferential Integrated Diffusion of Shield Tunnels[J]. Journal of Tongji University(Natural Science), 2020, 48(5): 629-637. doi: 10.11908/j.issn.0253-374x.19257

    CrossRef Google Scholar

    [6] 李术才, 薛翊国, 苏茂鑫, 等. 青岛胶州湾海底隧道涌水断层注浆效果综合检验方法研究[J]. 岩石力学与工程学报, 2019, 38(7): 1382-1388

    Google Scholar

    LI Shucai, XUE Yiguo, SU Maoxin, et al. Study of Comprehensive Test Method for Grouting Effect of Water Filling Fault in Qingdao KiaoChow Bay Subsea Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1382-1388.

    Google Scholar

    [7] 王学平, 李稳哲. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 2010, 43(03): 106–112 doi: 10.3969/j.issn.1009-6248.2010.03.014

    CrossRef Google Scholar

    WANG Xueping, LI Wenzhe. Geological Tectonics Control on the Karstic Water in the South Margin of the Ordos Basin[J]. Northwestern Geology, 2010, 43(03): 106-112. doi: 10.3969/j.issn.1009-6248.2010.03.014

    CrossRef Google Scholar

    [8] 魏久传, 韩承豪, 张伟杰, 等. 基于步进式算法的裂隙注浆扩散机制研究[J]. 岩土力学, 2019, 40(3): 913-919

    Google Scholar

    WEI Jiuchuan, HAN Chenghao, ZHANG Weijie, et al. Mechanism of fissure grouting based on step-wise calculation method[J]. Rock and Soil Mechanics, 2019, 40(3): 913-919.

    Google Scholar

    [9] 张连震, 张庆松, 刘人太, 等. 基于浆液-岩体耦合效应的微裂隙岩体注浆理论研究[J]. 岩土工程学报, 2018, 40(11): 2003-2011 doi: 10.11779/CJGE201811006

    CrossRef Google Scholar

    ZHANG Lian-zhen, ZHANG Qing-song, LIU Ren-tai, et al. Grouting mechanism in fractured rock considering slurry-rock stress coupling effects [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2003-2011. doi: 10.11779/CJGE201811006

    CrossRef Google Scholar

    [10] 张庆松, 王洪波, 刘人太, 等. 考虑浆液扩散路径的多孔介质渗透注浆机理研究[J]. 岩土工程学报, 2018, 40(5): 918-924 doi: 10.11779/CJGE201805017

    CrossRef Google Scholar

    ZHANG Qingsong, WANG Hongbo, LIU Rentai, et al. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. doi: 10.11779/CJGE201805017

    CrossRef Google Scholar

    [11] 钟登华, 樊贵超, 任炳昱, 等. 基于分形理论的坝基裂隙岩体注灰量与导水率关系研究[J]. 水利学报, 2017, 48(5): 576-587

    Google Scholar

    ZHONG Denghua, FAN Guichao, REN Bingyu, et al. Research on the relationship between cement take and transmissivity of fractured rocks under dam foundation based on fractal theory[J]. Journal of Hydraulic Engineering, 2017, 48(5): 576-587.

    Google Scholar

    [12] Ballesteros D, Giralt S, Garcia, et al. Quaternary regional evolution based on karst cave geomorphology in Picos de Europa[J]. Geomorphology, 2021, 336: 133-151.

    Google Scholar

    [13] FENG K, HE C, QIU Y, et al. Full-scale tests on bending behavior of segmental joints for large underwater shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 75(2): 100-116.

    Google Scholar

    [14] LU Yinlong, HE Mengqi, LI Wenshuai, et al. Micromechanical mechanisms of grouting reinforced in rock joints and microstructure optimization of grout-rock bonding interfaces[J]. Journal of Rock Mechanics and Engineering, 2020, 39(9): 1808-1818.

    Google Scholar

    [15] PARK D, OH J. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2018, 233: 63-75. doi: 10.1016/j.enggeo.2017.12.011

    CrossRef Google Scholar

    [16] SHI C, CAO C, LEI M, et al. Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2016, 51(1): 175-188.

    Google Scholar

    [17] WU H, SHEN S, CHEN R, et al. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels[J]. Computers and Geotechnics, 2020, 122: 103549. doi: 10.1016/j.compgeo.2020.103549

    CrossRef Google Scholar

    [18] XIN C L, WANG Z Z, YU J. The evaluation on shock absorption performance of buffer layer around the cross section of tunnel lining[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106032 doi: 10.1016/j.soildyn.2020.106032

    CrossRef Google Scholar

    [19] YAN Fugen, Zou debing, Min Zhenghui, et al. Effect Analysis of karst curtain grouting based on fuzzy comprehensive evaluation[J]. Yangtze River Report, 2023, 54(5): 182-188.

    Google Scholar

    [20] YAN G, SHEN Y, GAO B, et al. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation[J]. Tunnelling and Underground Space Technology, 2020, 97: 103223. doi: 10.1016/j.tust.2019.103223

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(103) PDF downloads(26) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint