2024 Vol. 57, No. 4
Article Contents

DAI Xinyu, ZHOU Bin, LI Xinlin, DU Biao, FAN Peng, ZHAO Jianglin, YANG Wenbo, WU Zhongshan. 2024. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun. Northwestern Geology, 57(4): 191-205. doi: 10.12401/j.nwg.2023188
Citation: DAI Xinyu, ZHOU Bin, LI Xinlin, DU Biao, FAN Peng, ZHAO Jianglin, YANG Wenbo, WU Zhongshan. 2024. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun. Northwestern Geology, 57(4): 191-205. doi: 10.12401/j.nwg.2023188

Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun

More Information
  • Qitai Mountain is located in Xinjiang−Xizang Highway 540 km west of Xinjiang Kunlun area, there are small−scale medium acid intrusive rocks distributed around it, the lithology is mainly composed of the quartz monzonite. Here we present bulk-rock geochemistry, zircon U-Pb geochronology of the Miocene quartz monzonite in Qitai Mountain in Western Kunlun in order to shed light on this issue. Zircon U–Pb dating yielded Miocene ages of (10.4 ± 0.3) Ma. Geochemically, this early Miocene quartz monzonite is A-type granites with high SiO2 (63.16%~68.20%), K2O (4.23%~5.24%), and low Al2O3 (13.39%~15.47%), MgO (1.06%~1.49%), TiO2 (0.60%~0.83%). They are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs, including K, Rb, Th, U, Ba and Sr), but depleted in high-field strength elements (Nb, Ta and Ti) and heavy rare earth elements (HREEs), and have obvious negative Eu anomalies. The geochemical characteristics of the rocks and the tectonic setting diagram indicate that the quartz monzonites may have been formed in an environment where the deep lithosphere was strongly extended, and a high temperature and low pressure environment was formed in the deep crust, which prompted a low degree of partial melting of the lower crust and rapid along deep and large faults. The uplift emplacement represents the magmatic response to the intraplate extensional background. We suggest that the Miocene magmas from the northern of Qita Mountain in Western Kunlun were likely sourced from low–degree partial melting of the lower crust with a high temperature and low pressure environment, there may have formed in the background of strong extension of the deep lithosphere, which promotes the magmas rapid uplift along deep and large faults.

  • 加载中
  • [1] 边千韬, 郑祥身. 青海可可西里地区构造特征与构造演化, 大陆岩石圈构造与资源[M]. 北京: 海洋出版社, 1992, 2: 19−20.

    Google Scholar

    [2] 迟效国, 张蕊, 范乐夫, 等. 藏北新生代玄武质火山岩起源的深部机制-大陆俯冲和板片断离驱动的地幔对流上涌模式[J]. 岩石学报, 2017, 33(10): 3011-3026

    Google Scholar

    CHI Xiaoguo, ZHANG Rui, FAN Lefu, et al. The Formatting Mechanism of Cenozoic Basaltic Volcanic Rocks in the Northern Tibet: Continental Subduction and Slab Break⁃off Driven by Mantle Convection and Upwelling[J]. Acta Petrologica Sinica, 2017.33(10): 3011-3026.

    Google Scholar

    [3] 崔建堂, 王炬川, 边小卫, 等. 西昆仑康西瓦北侧早古生代角闪闪长岩、英云闪长岩的地质特征及其锆石SHRIMP U-Pb测年[J]. 地质通报, 2006, 25(12): 1441-1449

    Google Scholar

    CUI Jiantang, WANG Juchuan, BIAN Xiaowei, et al. Geological characteristics of Early Paleozoic amphibolite and tonalite in northern Kangxiwar, West Kunlun, China and their zircon SHRIMP U-Pb dating[J]. Geological Bulletin of China, 2006.25(12): 1441-1449.

    Google Scholar

    [4] 代新宇, 杜彪, 赵江林, 等. 新疆西昆仑甜水海地区4幅1∶5万区域地质调查成果报告[R]. 西安: 陕西省地质调查中心, 2015.

    Google Scholar

    [5] 邓万明. 中昆仑造山带钾玄岩质火山岩的地质、地球化学和时代[J]. 地质科学, 1991(03): 201-213

    Google Scholar

    DENG Wangming. The geology geochemistry and forming age of the shoshonites from middle Kunlun mountain[J]. Chinese Journal of Geology, 1991, 26(3): 201-213.

    Google Scholar

    [6] 邓万明. 青藏北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究[J]. 岩石学报, 1993(04): 379-387

    Google Scholar

    DENG Wangming. Trace element and Sr, Nd isotopic features of the Cenozoic potassium-volcanic rocks from northern Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 1993, 9(4): 379-387.

    Google Scholar

    [7] 邓万明. 青藏高原北部新生代板内火山岩[M]. 北京: 地质出版社, 1998: 1−179

    Google Scholar

    DENG Wanming. Cenozoic intraplate volcanic rocks in the northern Qinghai-Tibet Plateau[M]. Beijing: Geological Press, 1998: 1−179.

    Google Scholar

    [8] 邓万明, 孙宏娟. 青藏北部板内火山岩的同位素地球化学与源区特征[J]. 地学前缘, 1998, 5(4): 307-317

    Google Scholar

    DENG Wangming, SUN Hongjuan. Features of isotopic geochemistry and source region for the intraplate volcanic rocks from northern Qinghai-Tibet plateau[J]. Earth Science Frontiers, 1998, 5(4): 307-317.

    Google Scholar

    [9] 丁林, 张进江, 周勇, 等. 青藏高原岩石圈演化的记录: 藏北超钾质及钠质火山岩的岩石学与地球化学特征[J]. 岩石学报, 1999, 15(1): 408-421

    Google Scholar

    DING Lin, ZHANG Jinjiang, ZHOU Yong, et al. Tectonic implication on the lithosphere evolution of the Tibet Plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet[J]. Acta Petrologica Sinica, 1999, 15(3): 408-421.

    Google Scholar

    [10] 段政, 邢光福, 余明刚, 等. 浙江外北山铝质A-1型花岗岩成因: 矿物学、年代学、地球化学及Hf同位素制约[J]. 地质学报, 2017, 91(01): 180-197

    Google Scholar

    DUAN Zheng, XING, Guangfu, YU Mingguang, et al. The petrogenesis of Waibeishan aluminous A1-type granite in Zhejiang province: Constraints from mineralogy, zircon U-Pb dating, geochemistry and Hf isotope[J]. Acta Geological Sinica, 2017, 91(1): 180-197.

    Google Scholar

    [11] 高源, 郑常青, 姚文贵, 等. 大兴安岭北段哈多河地区骆驼脖子岩体地球化学和锆石U-Pb年代学[J]. 地质学报, 2013, 87(9): 1293-1310

    Google Scholar

    GAO Yuan, ZHENG Changqing, YAO Wenggui, et al. Geochemistry and zircon U-Pb geochronology of the Luotuobozi Pluton in the Haduohe Area in the northern Daxing’anling[J]. Acta Geologica Sinica, 2013, 87: 1293-1310.

    Google Scholar

    [12] 韩芳林. 西昆仑增生造山带演化及成矿背景[M]. 中国地质大学(北京), 2006,141−160.

    Google Scholar

    [13] 姜耀辉, 周珣若. 西昆仑造山带花岗岩岩石学及构造岩浆动力学[J]. 现代地质, 1999, 13(4): 378

    Google Scholar

    JIANG Yaohui, ZHOU Xunruo. The petrology and tectonic magmatic dynamics of the Western Kunlun[J]. Geoscience, 1999, 13(4): 378.

    Google Scholar

    [14] 计文化. 西昆仑-喀喇昆仑晚古生代-早中生代构造格局[D]. 北京: 中国地质大学, 2005, 16−106

    Google Scholar

    JI Wenhua. Western Kunlun-Karakoram Late Paleozoic-Early Mesozoic Tectonic Pattern[D]. Beijing: China University of Geosciences, 2005, 16−106.

    Google Scholar

    [15] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480 doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    JIA Xiaohui, WANG Qiang, TANG Gongjian. A-type granites: Research progress and implications[J]. Geotectonica et Metallogenia, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    [16] 康磊, 校培喜, 高晓峰, 等. 西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年: 对古特提斯碰撞时限的制约[J]. 地质论评, 2012, 58(4): 763-774.

    Google Scholar

    KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Neopaleozoic and Mesozoic granitoid magmatism and tectonic? evolution of the western West Kunlun Mountains[J]. Geology in China, 2012, 42(3): 533-552.

    Google Scholar

    [17] 赖绍聪. 青藏高原北部新生代火山岩的成因机制[J]. 岩石学报, 1999, 15(1): 98-101 doi: 10.3321/j.issn:1000-0569.1999.01.011

    CrossRef Google Scholar

    LAI Shaocong. The genetic mechanism of Cenozoic volcanic rocks in the northern Qinghai-Tibet Plateau[J]. Chinese Journal of Petrology, 1999, 15(1): 98-101. doi: 10.3321/j.issn:1000-0569.1999.01.011

    CrossRef Google Scholar

    [18] 李佐臣, 裴先治, 李瑞保, 等. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报, 2013, 08: 2617-2634

    Google Scholar

    LI Zuocheng, PEI Xianzhi, LI Ruibao, et al. LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance[J]. Acta Petrologica Sinica, 2013, 29(8): 2617-2634.

    Google Scholar

    [19] 李荣社, 计文化, 杨永成. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008, 1−5.

    Google Scholar

    [20] 李新林, 周小康, 黎敦朋, 等. 新疆西昆仑甜水海地区4幅1: 5万区域地质调查成果报告[R]. 西安: 陕西省地质调查院, 2006.

    Google Scholar

    [21] 李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量—900km?[J]. 地质通报, 2007(10): 1288-1298

    Google Scholar

    LI Haibin, XU Zhiqin, YANG Jinshui, et al. The maximum cumulative strike-slip displacement of the Altyn Tagh fault—900 km (in Chinese)? Geol Bull China, 2007, 26: 1288–1298.

    Google Scholar

    [22] 牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B.P.伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.

    Google Scholar

    NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B.P. in the central segment of northern margin of North China Craton [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 486−503.

    Google Scholar

    [23] 刘嘉麒, 买卖提·依明. 西昆仑山第四纪火山的分布与K-Ar年龄[J]. 中国科学B辑: 化学, 生命科学, 地学, 1990, (2): 180-187

    Google Scholar

    LIU Jiaqi, MAIMAITI Yiming. K-Ar Age and distribution of Xikunlun Volcano in Quaternary[J]. Science in China (Series D), 1990, 20(2): 180-187.

    Google Scholar

    [24] 刘嘉麒. 中国火山[M]. 北京: 科学出版社, 1999: 75−90.

    Google Scholar

    [25] 刘昊, 崔军平, 金玮, 等. 松辽盆地东部地区花岗岩地球化学特征及其地质意义[J]. 西北地质, 2024, 57(2): 46−58.

    Google Scholar

    LIU Hao, CUI Junping, JIN Wei, et al. Geochemical Characteristics and Geological Significance of Granites in Eastern Songliao Basin[J]. Northwestern Geology, 2024, 57(2): 46−58.

    Google Scholar

    [26] 林清茶, 夏斌, 张玉泉. 西昆仑-喀喇昆仑地区钾质碱性岩Ar-Ar年龄—以羊湖、昝坎和苦子干岩体为例[J]. 矿物岩石, 2006(02): 66-70

    Google Scholar

    LIN Qingcha, XIA Bin, ZHANG Yuquan. Ar-Ar dating of Potassic Alkali-Rocks in the Western Kunlun-Kalako- rum Mountains[J]. Mineral Petrology, 2006, 26(2): 66-70.

    Google Scholar

    [27] 罗照华, 肖序常, 曹永清, 等. 青藏高原北缘新生代幔源岩浆活动及构造运动性质[J]. 中国科学(D辑: 地球科学), 2001(S1): 8-13.

    Google Scholar

    LUO Zhaohua, XIAO Xuchang, CAO Yongqing, et al. 2001. The Cenozoic man tle magmatism and motion of lithosphere on the north margin of the Tibetan Plateau[J]. Science in China(Series D), 44(Suppl): 10-17.

    Google Scholar

    [28] 罗照华, 张文会, 邓晋福, 等. 西昆仑地区新生代火山岩中的深源包体[J]. 地学前缘, 2000, 7(1): 295-298 doi: 10.3321/j.issn:1005-2321.2000.01.028

    CrossRef Google Scholar

    LUO Zhaohua, ZHANG Wenhui, DENG Jinfu, et al. Characteristic and geological significance of the deep-seated xenoliths in Cenozoic basalt in Kangxiwa, western Kunlun Mountains, China[J]. Earth Science Frontiers, 2000, 7(1): 295-298. doi: 10.3321/j.issn:1005-2321.2000.01.028

    CrossRef Google Scholar

    [29] 莫宣学, 潘桂堂. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43−51.

    Google Scholar

    MO Xuanxue, PAN Guitang. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 43−51.

    Google Scholar

    [30] 莫宣学, 赵志丹, 邓晋福, 等. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示[J]. 现代地质, 2007, 21(2): 255-264 doi: 10.3969/j.issn.1000-8527.2007.02.010

    CrossRef Google Scholar

    MO Xuanxue, ZHAO Zhidan, DENG Jinfu, et al. Migration of the Tibetan Cenozoic potassic volcanism and its transition to eastern basaltic province: Implications for crustal and mantle flow[J]. Geoscience, 2007, 21(2): 255-264. doi: 10.3969/j.issn.1000-8527.2007.02.010

    CrossRef Google Scholar

    [31] 乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 07: 1180-1194

    Google Scholar

    QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb geochronology and geochemical characteristics[J]. Acta Geologica Sinica, 2015, 89(7): 1180-1194.

    Google Scholar

    [32] 曲晓明, 辛洪波, 杜德道, 等. 西藏班公湖—怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J]. 地球化学, 2012, 41(1): 1-14 doi: 10.3969/j.issn.0379-1726.2012.01.001

    CrossRef Google Scholar

    QU Xiaoming, XIN, Hongbo, DU, Dedao, et al. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau[J]. Geochimica, 2012, 41(1): 1-14. doi: 10.3969/j.issn.0379-1726.2012.01.001

    CrossRef Google Scholar

    [33] 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.

    Google Scholar

    RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.

    Google Scholar

    [34] 汪洋, 焦永玲, 仝立华, 等. 再论A型花岗岩的实质-与张旗先生等商榷[J]. 岩石矿物学杂志, 2013, 32(2): 260-266

    Google Scholar

    WANG Yang, JIAO Yongling, TONG Lihua, et al. The essence of A-type granitoids: A discussion on the opinions held by Prof. Zhang Qi and some other researchers[J]. Acta Petrologica et Mineralogica, 2013, 32(2): 260-266.

    Google Scholar

    [35] 王权, 杨五宝, 张振福, 等. 藏西北黑石北湖一带新近纪火山岩的特征及构造意义[J]. 地质通报, 2005, (01): 80-86 doi: 10.3969/j.issn.1671-2552.2005.01.012

    CrossRef Google Scholar

    WANG Quan, YANG Wubao, ZHANG Zhenfu, et al. Geological ch aract eristics of Neogene volcanic rock s in the H eishi n orth lake area, n orthwest ern Tibet, and their impli cation f or the Neogene t ect onic evolution[J]. Geological Bulletin of China, 2005, 24(1): 80-86. doi: 10.3969/j.issn.1671-2552.2005.01.012

    CrossRef Google Scholar

    [36] 武昱东, 王宗起, 罗金海, 等. 滇东北东川下田坝A型花岗岩LA-ICP-MS锆石U-Pb年龄, 地球化学特征及其构造意义[J]. 地质通报, 2014, 33(6): 860-873

    Google Scholar

    WU Yudong, WANG Zongqi, LUO Jinhai, et al. LA-ICP-MS zircon U-Pb age and geochemistry of Xiatianba A-type granites in Dongchuan, Northeast Yunnan, and their tectonic significance[J]. Geological Bulletin of China, 2014, 33(6): 860-873.

    Google Scholar

    [37] 肖爱芳, 黎敦朋. 新藏公路奇台达坂晚中新世火山岩的发现及~(40)Ar-~(39)Ar定年[J]. 地质通报, 2010, 29(Z1): 237-242

    Google Scholar

    XIAO Aifang, LI Dunpeng. Discovery of Late Miocene volcanic rocks at Qitaidaban of Xinjiang-Tibet Highway, Chnia and its 40Ar-39Ar dating[J]. Geological Bulletin of China, 2010, 29(2/3): 237-242.

    Google Scholar

    [38] 解龙, 顿都, 朱利东, 等. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 中国地质, 2015, 42(5): 1214-1227 doi: 10.3969/j.issn.1000-3657.2015.05.004

    CrossRef Google Scholar

    XIE Long, DUN Du, ZHU Lidong, et al. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdise, Tibet[J]. Geology in China, 2015, 42(5): 1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004

    CrossRef Google Scholar

    [39] 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 02: 221-238

    Google Scholar

    XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Qinghai—plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and mechanisms for the rise of the plateau[J]. Geology In China, 2006, 33(2): 221-238.

    Google Scholar

    [40] 薛富红, 张晓晖, 邓江夏, 等. 内蒙古中部达来地区晚侏罗世A型花岗岩: 地球化学特征、岩石成因与地质意义[J]. 岩石学报, 2015, 31(06): 1774-1788

    Google Scholar

    XUE Fuhong, ZHANG Xiaohui, DENG Jiangxia, et al. Late Jurassic Atype granite from the Dalai region of central Inner Mongolia: Geochemistry, petrogenesis and tectonic implication[J]. Acta Petrologica Sinica, 2015, 31(6): 1774-1788.

    Google Scholar

    [41] 杨文强, 刘良, 曹玉亭, 等. 西昆仑塔什库尔干印支期(高压)变质事件的确定及其构造地质意义[J]. 中国科学: 地球科学, 2011, 41(8): 1047−1060.

    Google Scholar

    YANG Wengqiang, LIU Liang, CAO Yuting, et al. Geochronological evidence of Indosinian (high-pressure)metamorphic event and its tectonic significance in Taxkorgan area of the Western Kunlun Mountains, NW China[J]. Science China (Earth Science), 2010, 53(10): 1445−1459.

    Google Scholar

    [42] 杨经绥, 吴才来, 史仁灯, 等. 青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩[J]. 岩石学报, 2002, (02): 161-176

    Google Scholar

    YANG Jingshui, WU Cailai, SHI Rendeng, et al. Miocene and Pleistocene shoshonitic volcanic rocks in the Jingyuhu area, north of the Qinghai-Tibet Plateau[J]. Acta Petrologica Sinica, 2002, 18(2): 161-176.

    Google Scholar

    [43] 俞胜, 贾轩, 姚皓骞, 等. 西秦岭白龙江地区志留系迭部组岩石地球化学特征及碎屑锆石原位U–Pb年代学研究[J]. 西北地质, 2023, 56(5): 245−261.

    Google Scholar

    YU Sheng, JIA Xuan, YAO Haoqian, et al. Geochemistry Characteristics and Detrital Zircon In–Site U–Pb Geochronology of Silurian Diebu Formation in Bailongjiang Area, West Qinling Mountains[J]. Northwestern Geology, 2023, 56(5): 245−261.

    Google Scholar

    [44] 袁超, 孙敏, 李继亮. 西昆仑中带两个花岗岩的年龄和可能的源区[J]. 科学通报, 1999, 44(5): 534-537.

    Google Scholar

    YUAN Chao, SUN Ming, LI Jiliang. Two granitic plutons in central western Kunlun belt: Their ages and possible sources[J]. Chinese Science Bulletin, 1999, 44(19): 534-537.

    Google Scholar

    [45] 袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511−1520.

    Google Scholar

    YUAN Honglin, WU Fuyuan, GAO Shan, et al. Zircon laser probe U-Pb age determination and REE composition analysis of Cenozoic invasions in Northeast China[J]. Chinese Science Bulletin, 2003, 48(14): 1511−1520.

    Google Scholar

    [46] 张以佛, 郑祥身, 郑健康. 青海可可西里地区地质演化[M]. 北京: 科学出版社, 1996, 50−55

    Google Scholar

    [47] 张旗, 潘国强, 李承东, 等. 花岗岩结晶分离作用问题—关于花岗岩研究的思考之二[J]. 岩石学报, 2007, 23(6): 1239-1251

    Google Scholar

    ZHANG Qi, PAN Guoqiang, LI Chengdong, et al. Does fractional crystallization occur in granitic magma? Some crucial questions on granite study (2) [J]. Acta Petrologica Sinica, 2007, 23(6): 1239-1251.

    Google Scholar

    [48] 张旗, 冉白皋, 李承东. A型花岗岩的实质是什么? [J]. 岩石矿物学杂志, 2012, 31(4), 621-626.

    Google Scholar

    ZHANG, Qi, Ran Baigao, LI Chengdong. The criteria and discrimination for A–type granites: A reply to the question put forward by Wang Yang and some other persons for “A–type granite: what is the essence?” [J]. Acta Petrologica Et Mineralogica, 2013, 33(2): 267–274.

    Google Scholar

    [49] 张玉泉, 朱炳泉, 谢应雯, 等. 青藏高原西部的抬升速率: 叶城一狮泉河花岗岩40Ar-39Ar年龄的地质解释[J]. 岩石学报, 1998, 14 (l): 11-22.

    Google Scholar

    ZHANG Yuquan, ZHU Bingquan, XIE Yingwen, et al. The uplifting rates for the western Qinghai–Xizang Plateau: interpretation of 40Ar–39Ar dating data for the granites in the area from Yecheng to Shiquanhe[J]. Acta Petrologica Sinica, 1998, 14(1): 11–21.

    Google Scholar

    [50] 张传林, 陆松年, 于海峰, 等. 西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据[J]. 中国科学: 地球科学, 2007, 37(2): 145−155.

    Google Scholar

    ZHANG Chuanlin, LU Songnian, YU Haifeng, et al. Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai-Tibet Plateau: Evidence from zircon SHRIMP and LA-ICP-MS U-Pb geochronology[J]. Science in China (Series D), 2007, 37(2): 145−155.

    Google Scholar

    [51] 张培烈, 王根厚, 冯翼鹏, 等. 古特提斯洋闭合时限: 来自南羌塘唐古拉岩浆带查吾拉岩体的证据[J]. 成都理工大学学报(自然科学版), 2022, 49(3): 311−323.

    Google Scholar

    ZHANG Peilie, WANG Genhou, FENG Jipeng, et al. Closure time of the Paleo-Tethys Ocean: Evidence from the southern Qiangtang Tanggula magmatic belt, Tibet, China [J], Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(3): 311−323.

    Google Scholar

    [52] 赵波, 李有波, 陈思尧, 等. 西昆仑甜水海地区新近纪侵入岩地球化学特征及锆石U-Pb年龄[J]. 新疆地质, 2020, 38(03): 319-324 doi: 10.3969/j.issn.1000-8845.2020.03.007

    CrossRef Google Scholar

    ZHAO Bo, LI Youbo, CHEN Siyao, et al. Geochemical Characteristics and Zircon U-Pb Dating of Neogene Period Intrusive Rock in the Tianshuihai Area, West Kunlun[J]. Xin Jiang Geology, 2020, 38(03): 319-324. doi: 10.3969/j.issn.1000-8845.2020.03.007

    CrossRef Google Scholar

    [53] 赵江林, 曾忠诚, 贺宁强, 等. 新疆大红柳滩地区奇台达坂北侧新近系泉水沟组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2017, 36(07): 1129-1146 doi: 10.3969/j.issn.1671-2552.2017.07.004

    CrossRef Google Scholar

    ZHAO Jianglin, ZENG Zongcheng, HE Ningqiang, et al. LA ‐ICP ‐ MS Zircon U‐Pb Ages, Geochemical Characteristics and Geological Significance of the Neogene Quanshuigou Formation Volcanic Rocks in the North of Dahongliutan‐Qitaidaban Area, Xinjiang[J]. Geological Bulletin of China, 2017, 36(7): 1129-1146. doi: 10.3969/j.issn.1671-2552.2017.07.004

    CrossRef Google Scholar

    [54] 赵江林, 贺宁强, 杜彪, 等. 西昆仑奇台达坂一带晚三叠世中酸性侵入岩锆石LA-ICP-MS年龄、地球化学特征及其构造意义[J]. 地质论评, 2017, 63(05): 1337-1360

    Google Scholar

    ZHAO Jianglin, HE Ningqiang, DU Biao, et al. LA-ICP-MS Zircon U-Pb ages, geochemical characteristics of Late Triassic Intermediate—Acid intrusive rocks in Qitaidaban area, Western Kunlun and their tectonic significance[J]. Geological review, 2017, 63(5): 1337-1360.

    Google Scholar

    [55] 赵振明, 计文化, 李荣社, 等. 青藏高原北部巴颜喀拉与东昆仑地区新近纪以来火山岩的地球化学特征及其成因[J]. 地球化学, 2009, 38(03): 205-230

    Google Scholar

    ZHAO Zhenming, JI Wenhua, LI Rongshe, et al. Geochemical characteristics and petrogenesis of volcanic rocks since the Neogene in the Bayankala and East Kunlun region, northern Tibetan Plateau. Geochimica, 2009, 38(3): 205-230.

    Google Scholar

    [56] 朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原及邻区新生代火山岩Sr-Nd-Pb同位素特征[J]. 沉积与特提斯地质, 2003, 23(3): 1-11 doi: 10.3969/j.issn.1009-3850.2003.03.001

    CrossRef Google Scholar

    ZHU Dicheng, PAN Guitang, MO Xuanxue, et al. Sr-Nd-Pb isotopic variations of the Cenozoic volcanic rocks from the Qinghai Xizang Plateau and its adjacent areas[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(3): 1-11. doi: 10.3969/j.issn.1009-3850.2003.03.001

    CrossRef Google Scholar

    [57] 任纪舜. 从全球看中国大地构造(中国及邻区大地构造图)[M]. 北京: 地质出版社, 1999, 1−15.

    Google Scholar

    [58] Altherr R, Holl A, Heger E, et al. High potassium calc-alkaline I-type plutism in the European Variscides[M]. Northern Vosges (France) and Northern Schwarcwald (Germany), 2000.

    Google Scholar

    [59] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59-79.

    Google Scholar

    [60] Arnaud N O, Vidal P H, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications[J]. Earth and Planetary Science Letters, 1992, 111: 351-367. doi: 10.1016/0012-821X(92)90189-3

    CrossRef Google Scholar

    [61] Atherton M, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [62] Bea F, Arzamastsev A, Montero P, et al. Aonmalous alkalin rocks of Soustov, Kola: evidence of mantle derived matasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy and Petrology, 2001, 140: 554-566. doi: 10.1007/s004100000211

    CrossRef Google Scholar

    [63] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29.

    Google Scholar

    [64] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[J]. In: Henderson P (Ed). Rare Earth Element Geochemistry[M]. Elsevier, Amsterdam, 1984, 63-114.

    Google Scholar

    [65] Chappell B W. Aluminium saturation in I - and S - type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46: 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [66] DePaolo D J, Daley E E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J]. Chemical Geology, 2000, 169(1-2): 157-185. doi: 10.1016/S0009-2541(00)00261-8

    CrossRef Google Scholar

    [67] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [68] Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis [J]. Lithos, 1990, 26: 115-134. doi: 10.1016/0024-4937(90)90043-Z

    CrossRef Google Scholar

    [69] Frost B R, Arculus R J, Barnes C G, et al. A geochemical classification of granitic rocks[J]. Journal of Petrology, 2001, 42: 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [70] Gao R, Li P W, Li Q S, et al. Deep process of the collision and deformation on the northern margin of the Tibetan Plateau:Revelation from investigation of the deep seismic profiles[J]. Science in China (Series D), 2001, 44(S1): 71–78.

    Google Scholar

    [71] Harris N B W, Inger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110: 46-56. doi: 10.1007/BF00310881

    CrossRef Google Scholar

    [72] King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Petrology, 1997, 38: 371−391.

    Google Scholar

    [73] Jung S, Pfander J A. Source composition and melting temperatures of orogcnic granitoid: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 2007.19: 859-870. doi: 10.1127/0935-1221/2007/0019-1774

    CrossRef Google Scholar

    [74] MA Changqian, LI Zhichang, EHLERS Carl, et al. A post-collisional magmatic plumbing system: Mesozoic granitoid plutonsfrom the Dabieshan high-pressure and ultrahigh-pressuremetamorphic zone, east-central China[J]. Lithos, 1998, 45(1-4): 431-456. doi: 10.1016/S0024-4937(98)00043-7

    CrossRef Google Scholar

    [75] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101: 615-643.

    Google Scholar

    [76] Middlemoet E A. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [77] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81 doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [78] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of graniticrocks[J]. Journal of Petrology, 1984.25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [79] Pitcher W S. The nature and origin of granite[M]. Springer Science & Business Media, 1997.

    Google Scholar

    [80] Reid J B, Murray D P, Hermes O D, et al. Fractional crystallization in granites of the Sierra Nevada: How important is it?[J]. Geology, 1993, 21(7): 587−590.

    Google Scholar

    [81] Replumaz A, Negredo A M, Villasenor A ,et al. Indian continental subduction and slab break-off during Tertiary collision[J]. Terra Nova, 2010, 22(4): 290−296

    Google Scholar

    [82] Rubatto D. Zircon Trace Element Geochemistry: Parti ⁃ tioningwith Garnetandthe Linkbetween U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2

    CrossRef Google Scholar

    [83] Rudnick R L, Gao S. Composion of the continental crust[M]. Treatise on Geochemistry, Oxford: Elsevier, 2003, 3: 1−64.

    Google Scholar

    [84] Skjerlie K P, Johnston A D. Vapor-absent melting at 10k bar of a biotite-and amphibole-bearing tonalitic gneiss: Implications for the gen-eration of A-type g ranites[J]. Geology, 1992, 20(3): 263-266. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

    CrossRef Google Scholar

    [85] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts[J]. Implications for mantle composition and processes. Geological Society of London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [86] Watson E B, HARRISON T M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth[J]. Science, 2005, 308(5723): 841-844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    [87] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [88] ZHANG Zhaochong, XIAO Xuchang, WANG Jun, et al. Post-Collisional Plio-Pleistocene Shoshonitic Volcanism in the Western Kunlun Mountains, NW China: Geochemical Constraints on Mantle Source Characteristics and Petrogenesis[J]. Journal of Asian Earth Sciences, 2008, 31: 379-403. doi: 10.1016/j.jseaes.2007.06.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(575) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint