2023 Vol. 56, No. 6
Article Contents

REN Haidong, WANG Tao, PAN Tong, WANG Jianguo. 2023. Nd–Hf Isotopic Characteristics, Evolution Trend and Tectonic Setting of Triassic Magmatic Rocks in the Eastern Segment of East Kunlun Orogeny. Northwestern Geology, 56(6): 95-112. doi: 10.12401/j.nwg.2023183
Citation: REN Haidong, WANG Tao, PAN Tong, WANG Jianguo. 2023. Nd–Hf Isotopic Characteristics, Evolution Trend and Tectonic Setting of Triassic Magmatic Rocks in the Eastern Segment of East Kunlun Orogeny. Northwestern Geology, 56(6): 95-112. doi: 10.12401/j.nwg.2023183

Nd–Hf Isotopic Characteristics, Evolution Trend and Tectonic Setting of Triassic Magmatic Rocks in the Eastern Segment of East Kunlun Orogeny

More Information
  • As a major component of the western segment of the Central Orogenic System, the East Kunlun Orogeny is characterized by the largely exposed of Triassic magmatic rocks. Based on the collected zircon U–Pb geochronological data of 96 Triassic magmatic rocks in the eastern segment of the East Kunlun orogeny, the Triassic magmatic activity is limited to 212~252 Ma, and can be further divided into three stages: early– (238~252 Ma), middle– (226~238 Ma) and late–stage (212~226 Ma). Among them, the peak magmatic period is the early stage (238~252 Ma). The statistical results of 106 Nd isotopes of Triassic magmatite in the eastern segment of the East Kunlun Orogeny show that εNd(t) values range from –9.4 to –1.7, mainly concentrated between –6.5 and –3.0, and the Nd model ages (TDM(Nd)) range from 0.72 to 1.88 Ga, mainly concentrated between 1.00 and 1.80 Ga. The statistical results of 41 Hf isotopes (whole rock, zircon) of Triassic magmatite show that εHf(t) values vary greatly (–8.4 to +12.4), mainly concentrated between –4.5 and +2.0, and the crustal model ages (TDMC(Hf)) range from 0.49 to 1.80 Ga, mainly concentrated between 1.15 and 1.55 Ga. Overall, the Triassic magmatic rocks are mainly derived from the reworking of Mesoproterozoic crustal materials, with minor involvement of juvenile crust (< 1.0 Ga) and Paleoproterozoic crustal materials. From the early stage (237~250 Ma) to middle stage (226~238 Ma) and then to late stage (212~226 Ma), the Nd–Hf isotopic parameters seems exhibit a certain evolutionary trend. In the early stage especially in the early Triassic, the εNd(t) values are higher, and positive εHf(t) values occupy a large proportion, indicating the presence of more juvenile material in the source. In the middle stage, lower εNd(t) values and negative εHf(t) values dominate the major proportion, and Hf model ages (TDMC(Hf)) reveals the presence of Paleoproterozoic crustal material. In the late stage, the Nd–Hf model ages reveal an increase in older crustal source components. This magmatic source evolutionary trend is consistent with the tectonic evolution setting of subduction to collision and then to post–collision in the eastern segment of the East Kunlun orogeny in Triassic period.

  • 加载中
  • [1] 陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带晚三叠世岩浆混合作用: 以和勒冈希里克特花岗闪长岩体为例[J]. 中国地质, 2013, 40(4): 1044-1065.

    Google Scholar

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Triassic magma mixing in the East Kunlun orogenic belt: A case study of Helegang Xilikete granodiorites[J]. Geology in China, 2013, 40(4):1044-1065.

    Google Scholar

    [2] 陈国超, 裴先治, 李瑞保, 等. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报, 2013a, 87(02): 178-196

    Google Scholar

    Chen G C, Pei X Z, Li R B, et al. Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun[J]. Acta Geologica Sinica, 2013a, 87(02): 178-196.

    Google Scholar

    [3] 陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基的岩浆混合成因: 来自镁铁质微粒包体的证据[J]. 地学前缘, 2016, 23(04): 226-40

    Google Scholar

    Chen G C, Pei X Z, Li R B, et al. Genesis of magma mixing and mingling of xiangjiananshan granite batholith in the eastern section of east kunlun orogen: evidence from mafic microgranular enclaves(mmes). Earth Science Frontiers, 2016, 23(04): 226-40.

    Google Scholar

    [4] 陈宣华, 尹安, George G, 等. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学[J]. 地质学报, 2011, 85(2): 157-171.

    Google Scholar

    CHEN Xuanhua, YIN An, George G, et al. Chemical Geodynamics of Granitic Magmatism in the Basement of the Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau[J]. Acta Geological Sinica, 2011, 85(2): 157-171.

    Google Scholar

    [5] 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 2005, 32(03): 386-395.

    Google Scholar

    Chen H W , Luo Z H , Mo X X , et al. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt[J]. Geology in China, 2005, 32(3): 393-395.

    Google Scholar

    [6] 丁烁, 黄慧, 牛耀龄, 等. 东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因[J]. 岩石学报, 2011, 27(12): 3603-3614

    Google Scholar

    Ding S, Huang H, Niu Y L, et al. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrologica Sinica, 2011, 27(12): 3603-3614.

    Google Scholar

    [7] 郭正府, 邓晋福. 青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 1998, 12(03): 344-352

    Google Scholar

    Guo ZF, Deng JF. Late palaeozoic mesozoic intracontinental orogenic process and intermedate acidic igneous rocks from the eastern kunlun mountains of northwestern china [J]. Geoscience, 1998, 12(03): 344-352.

    Google Scholar

    [8] 侯增谦、郑远川、卢占武、许博、王长明、张洪瑞. 青藏高原巨厚地壳: 生长, 加厚与演化[J]. 地质学报, 2020, 94(10): 2797–2815 doi: 10.3969/j.issn.0001-5717.2020.10.001

    CrossRef Google Scholar

    HOU ZQ, ZHENG YC, LU ZW, et al. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 2020, 94(10): 2797–2815. doi: 10.3969/j.issn.0001-5717.2020.10.001

    CrossRef Google Scholar

    [9] 姜春发. 中央造山带几个重要地质问题及其研究进展[J]. 地质通报, 2002, 21(8): 453-455.

    Google Scholar

    JIANG Chunfa. Several important geological problems about the Central Orogenic Belt and progress in its research [J]. Geological Bulletin of China, 2002, 21(8): 453-455.

    Google Scholar

    [10] 李碧乐, 孙丰月, 于晓飞, 等. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J]. 岩石学报, 2012, (04): 1163-1172

    Google Scholar

    LI BL, SUN FY, YU XF, et al. U-Pb dating and geochemistry of diorite in the eastern section from eastern Kunlun middle uplifted basement and granitic belt[J]. Acta Petrologica Sinica, 2012, 28(4): 1163-1172

    Google Scholar

    [11] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244-254.

    Google Scholar

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun [J]. Earth Science Frontiers, 2012, 19(5): 244-254.

    Google Scholar

    [12] 李金超, 贾群子, 杜玮, 等. 东昆仑东段阿斯哈矿床石英闪长岩 LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1188-1199.

    Google Scholar

    LI Jinchao, JIA Qunzi, DU Wei, et al. LA-ICP-MS zircon dating and geochemical characteristics of quartz diorite in Asiha gold deposit in east segment of the eastern Kunlun[J]. Journal of Jilin University, 2014, 44(4):1188-1199

    Google Scholar

    [13] 李小江, 李佐臣, 杨拴海, 等.西秦岭西段然果儿岗花岗闪长岩体锆石U-Pb定年及地质意义[J].新疆地质, 2015, 33(3): 1-66.

    Google Scholar

    LI Xiaojiang, LI Zuochen, YANG Shuanhai, et al. Zircon U-Pb Dating of Ranguoergang Granodiorite in Western Section of West Qinling, and its Geological Significance[J]. Xinjiang Geology, 2015, 33(3): 1-66.

    Google Scholar

    [14] 李佐臣, 裴先治, 刘战庆, 等.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学, 地球化学特征及其地质意义[J]. 地质学报, 2013, 87(8): 1089-1103.

    Google Scholar

    LI Zuochen, PEI Xianzhi, LIU Zhanqing, et al. Geochronology and geochemistry of the Gerizhuotuo diorites from the Buqingshan tectonic Melange belt in the Southern margin of East Kunlun and their geologic implications[J]. Acta Geologica Sinica, 2013, 87(8): 1089-1103.

    Google Scholar

    [15] 刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类Pb-Sr-Nd-O 同位素特征[J].地球学报, 2003, 58(6): 584-588.

    Google Scholar

    LIU Chengdong, Mo Xuanxue, LUO Zhaohua, et al. Pb-Sr-Nd-O isotope characteristics of granitoids in East Kunlun orogenic belt[J]. Acta Geoscientica Sinica, 2003, 58(6), 584-588.

    Google Scholar

    [16] 刘成东, 张文秦, 莫宣学, 等. 东昆仑约格鲁岩体暗色微粒包体特征及成因[J]. 地质通报, 2002, 21(11): 739-744.

    Google Scholar

    LIU Chengdong, ZHANG Wenqin, MO Xuanxue, et al. Features and origin of mafic microgranular enclaves in the Yuegelu granite in the Eastern Kunlun[J]. Geological Bulletin of China, 2002, 21(11), 739-744.

    Google Scholar

    [17] 刘建楠, 丰成友, 亓锋, 等. 青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究[J]. 岩石学报, 2012, 28(02): 679-690

    Google Scholar

    LIU JN, FENG CY, YUAN F, et al. SIMS zircon U-Pb dating and fluid inclusion studies of Xiadeboli Cu-Mo ore district in Dulan County, Qinghai Province, China[J]. Acta Petrologica Sinica, 2012, 28(02): 679-690.

    Google Scholar

    [18] 刘建平, 赖健清, 谷湘平, 等. 青海赛什塘铜矿区侵入岩体地球化学及锆石LA-ICPMS U-Pb年代学[J]. 中国有色金属学报, 2012, 22(03): 622-632

    Google Scholar

    LIU JP, LAI JQ, GU XP, et al. Geochemistry and zircon LA-ICPMS U-Pb geochronology of intrusive body in Saishitang copper deposit, Qinghai Province, China[J]. Chinese Journal of Nonferrous Metals, 2012, 22(03): 622-632.

    Google Scholar

    [19] 罗明非, 莫宣学, 喻学惠, 等. 东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义[J]. 岩石学报, 2014, 30(11): 3229-3241

    Google Scholar

    LUO MF, MO XX, YU XH et al. Zircon LA-ICP-MS U-Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3229-3241.

    Google Scholar

    [20] 罗照华, 曹永清. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(06): 292-297

    Google Scholar

    Luo Z H, CAO YQ. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 2002, 21(6): 292-297

    Google Scholar

    [21] 罗照华, 邓晋福, 曹永清, 等. 青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J]. 现代地质, 1999, 13(01): 51-56

    Google Scholar

    LUO ZH, DENG JF, CAO YQ, ET AL. On late Paleozoic early Mesozoic volcanism and regional tectonic evolution of eastern kunlun, qinghai province[J]. Geoscience, 1999, 13(01): 51-56.

    Google Scholar

    [22] 马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-68.

    Google Scholar

    MA CQ, XIONG FH, YIN S, et al. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555-3568.

    Google Scholar

    [23] 莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 12(03): 351-67 doi: 10.16108/j.issn1006-7493.2011.03.004

    CrossRef Google Scholar

    Mo X X. Magmatism and evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 2011, 12(03): 351-67. doi: 10.16108/j.issn1006-7493.2011.03.004

    CrossRef Google Scholar

    [24] 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3): 403-414

    Google Scholar

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(3): 1089-1103.

    Google Scholar

    [25] 潘裕生, 方爱民. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 2010, 45(1): 92-101.

    Google Scholar

    PAN Yusheng, FANG Aimin. Formation and evolution of the Tethys in the Tibetan Plateau[J]. Chinese Journal of Geology, 2010, 45(1): 92-101.

    Google Scholar

    [26] 强娟. 青藏高原东北缘宗务隆构造带花岗岩及其构造意义[D]. 西安: 西北大学, 2008: 1−64

    Google Scholar

    QIANG Juan. The granitiods in zongwulong tectonic zone on the northeastern margin of the qinghai-Tibet plateau and its tectonic significance[D]. Xi’an: Northwest University, 2008: 1−64.

    Google Scholar

    [27] 任海东, 王涛. 东昆仑—西秦岭造山带对接处三叠纪花岗质岩石时空演化、物源特征对比及其大地构造意义[J]. 地球学报, 2017, 38(s): 59-63

    Google Scholar

    Ren H D, Wang T. Temporal-spatial Variations, Sources and Tectonic Significances of the Triassic Granitic Rocks in the Junction Part of the East Kunlun and West Qinling Orogen, Central China[J]. Acta Geoscientica Sinica, 2017, 38(s): 59-63.

    Google Scholar

    [28] 任纪舜. 昆仑—秦岭造山系的几个问题[J]. 西北地质, 2004, 1-5

    Google Scholar

    REN JS. Some problems on the Kunlun-Qinling orogenic system[J]. Northwestern Geology, 2004, 1-5.

    Google Scholar

    [29] 宋忠宝, 张雨莲, 陈向阳, 等. 东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J]. 矿床地质, 2013, 32(1): 157-168.

    Google Scholar

    SONG Zhongbao, ZHANG Yulian, CHEN Xiangyang, et al. Geochemical characteristics of Harizha granite diorite -porphyry in East Kunlun and their geological implications[J]. Mineral Deposits, 2013, 32(01): 157-168.

    Google Scholar

    [30] 田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28-−45.

    Google Scholar

    TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28-45.

    Google Scholar

    [31] 王涛, 黄河, 宋鹏, 等. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例[J].地球科学, 2020, 45(7): 2326-2344.

    Google Scholar

    WANG Tao, HUANG He, SONG Peng, et al. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang)[J]. Earth Science, 2020, 45(7): 2326-2344.

    Google Scholar

    [32] 王涛, 侯增谦. 同位素填图与深部物质探测(Ⅰ): 揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 2018, 25: 1-19

    Google Scholar

    WANG T, HOU ZQ. Isotopic mapping and deep material probing (Ⅰ): revealing the compositional evolution of the lithosphere and crustal growth processes[J]. Earth Science Frontiers, 2018, 25: 1-19.

    Google Scholar

    [33] 王新宇, 陈能松, 陈海, 等. 柴达木周缘印支期花岗岩同位素地球化学特征及其对基底属性的制约[J]. 矿物岩石地球化学通报, 2008, 27(1): 13-19.

    Google Scholar

    WANG Xinyu, CHEN Nengsong, CHEN Hai, et al. Isotopic Geochemistry Characters of Indosinian Granites around Qaidam Basin and its Constraints on Basement Affinity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 13-19.

    Google Scholar

    [34] 王永标, 黄继春. 海西—印支早期东昆仑造山带南侧古海洋盆地的演化[J].地球科学: 中国地质大学学报, 1997, 22(4): 33-36.

    Google Scholar

    WANG Yongbiao, HUANG Jichun. Paleo-ocean evolution of the southern Eastern Kunlun orogenic belt during Heacy-early Indosinian[J]. Earth Science-Journal of China University of Geosciences, 1997, 22(4):33-36.

    Google Scholar

    [35] 吴芳, 张绪教, 张永清, 等. 东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义[J]. 地质力学学报, 2010, 16(01): 44-50

    Google Scholar

    Wu F, Zhang X J, Zhang Y Q, et al. Zircon u-pb ages for rhyolitic tuffs of the naocangjiangou formation in the east kulun orogenic belt and their implication[J]. Journal of Geomechanics, 2010, 16(01): 44-50.

    Google Scholar

    [36] 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108.

    Google Scholar

    WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92−108.

    Google Scholar

    [37] 熊富浩, 马昌前, 张金阳, 等. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J]. 岩石学报, 2011, 27(11): 3350-3364

    Google Scholar

    Xiong F H, Ma C Q, Zhang J Y, et al. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt[J]. Acta Petrologica Sinica, 2011, 27(11): 3350-3364

    Google Scholar

    [38] 徐多勋, 杨拴海, 李瑞保, 等.西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J].地球科学与环境学报, 2015, 37(3): 22-33.

    Google Scholar

    XU Duoxun, YANG Shuanhai, LI Ruibao, et al. Geochronological, geochemical characteristics and geological significance of tadong granodiorite pluton in the western section of West Qinling[J]. Journal of Earth Sciences & Environment, 2015, 37(3):22-33.

    Google Scholar

    [39] 杨拴海, 李瑞保, 王伟峰, 等. 西秦岭西段曲如沟花岗闪长岩年代学、地球化学特征及构造意义研究[J]. 西北地质, 2015, 48 (2): 57-72.

    Google Scholar

    YANG Shuanhai, LI Ruibao, WANG Weifeng, et al. Geochronology,Geochemical Characteristics and Tectonic Significance of Qurugou Granodiorite in Western Section of West Qinling Orogen[J]. Northwestern Geology, 2015, 48 (2): 57-72.

    Google Scholar

    [40] 殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学: 中国地质大学学报, 1997, 22(4): 3-6.

    Google Scholar

    YIN Hongfu, ZHANG Kexin. Characteristics of the Eastern Kunlun Orogenic belt[J]. Earth Science-Journal of China University of Geosciences, 1997, 22(4): 3-6.

    Google Scholar

    [41] 袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(02): 203-211 doi: 10.3321/j.issn:0371-5736.2000.02.012

    CrossRef Google Scholar

    Yuan WM, Mo XX, Yu XH. The record of Indosinian tectonic setting from the granotoid of eastern Kunlun Mountains [J]. Geological Review, 2000, 46(02): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012

    CrossRef Google Scholar

    [42] 翟明国. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序[J]. 岩石学报, 2017, 33(01): 1-12

    Google Scholar

    Zhai MG. Granites: Leading study issue for continental evolution[J]. Acta Petrologica Sinica, 201733(01): 1-12.

    Google Scholar

    [43] 张国伟, 柳小明. 关于“中央造山带”几个问题的思考[J]. 地球科学, 1998: 9-14

    Google Scholar

    ZHANG GW, LIU XM. Some remarks on china central orogenic system. Geological science, 1998: 9-14.

    Google Scholar

    [44] 张宏飞, 陈岳龙, 徐旺春, 刘荣, 袁洪林, 柳小明. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报, 2006, 22(12): 2910-22

    Google Scholar

    ZHANG HF, CHEN YL, XU WC, ET AL. Granitoids around Gonghe basin in Qinghai province: petrogenesis and tectonic implications. Acta Petrologica Sinica, 22(12): 2910-22.

    Google Scholar

    [45] 钟大赉, 丁林, 张进江, 等. 中国造山带研究的回顾和展望[J]. 地质论评, 2002, 147-52

    Google Scholar

    ZHONG DL, DING L, ZHANG JJ. Study of Orogenic Belts in China: Retrospects and Prospects[J]. Geological Review, 2002, 147-52.

    Google Scholar

    [46] 张智勇, 殷鸿福, 王秉璋, 等. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据[J].地球科学: 中国地质大学学报, 2004, 29(6): 691-696.

    Google Scholar

    ZHANG Zhiyong, YIN Hongfu, WANG Bingzhang, et al. Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(6):691-696

    Google Scholar

    [47] 翟明国, 张旗, 陈国能, 等. 大陆演化与花岗岩研究的变革[J]. 科学通报, 2016, 61(13): 1414-1420.

    Google Scholar

    ZHAI M G, ZHANG Q, CHEN G N, et al. Adventure on the research of continental evolution and related granite geochemistry (in Chinese). Chin Sci Bull, 2016, 61(13): 1414–1420

    Google Scholar

    [48] 郑永飞, 陈伊翔, 戴立群, 等. 发展板块构造理论:从洋壳俯冲带到碰撞造山带[J]. 中国科学:地球科学, 2015, 45(6): 711-735.

    Google Scholar

    ZHENG Yongfei, CHEN Yixiang, DAI Liqun, et al. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China: Earth Sciences, 58: 1045–1069

    Google Scholar

    [49] CHEN XH, GEORGE G, YIN An, et al. Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai‐Tibet Plateau: LA‐ICP‐MS Zircon U‐Pb Geochronology and its Geological Significance[J]. Acta Geologica Sinica‐English Edition, 2012, 86(2): 350-369. doi: 10.1111/j.1755-6724.2012.00665.x

    CrossRef Google Scholar

    [50] Chen X H, Gehrels G, Yin A, et al. Geochemical and Nd–Sr–Pb–O isotopic constrains on Permo–Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan plateau: Implications for the evolution of the Paleo-Tethys[J]. Journal of Asian Earth Sciences, 2015, 114: 674-692

    Google Scholar

    [51] DAI JG, WANG C, HOURIGAN J, et al. Multi-stage tectono- Mag Matic events of the Eastern Kunlun Range, northern Tibet: Insights from U–Pb geochronology and (U–Th)/He thermochronology[J]. Tectonophysics, 2013, 599(0): 97-106.

    Google Scholar

    [52] DING QF, JIANG SY, SUN FY. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 2014, 205(0): 266-283.

    Google Scholar

    [53] DONG YP, HE DF, SUN SS, ET AL. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186, 231–261. . doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    [54] Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust [J]. Journal of the Geological Society, 2010, 167(2):229-248.

    Google Scholar

    [55] Hawkesworth C, Cawood P, Dhuime B. 2013. Continental growth and the crustal record[J]. Tectonophysics, 2013, 609(1): 651−660.

    Google Scholar

    [56] Hu Y, Niu YL, Li J, et al. Petrogenesis and tectonic significance of the late Triassic Mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau[J]. Lithos, 2016, 245: 205−222.

    Google Scholar

    [57] Hawkesworth C J, Kemp A I. The differentiation and rates of generation of the continental crust [J]. Chemical Geology, 2006, 226: 134-143.

    Google Scholar

    [58] HUANG H, NIU YL, NOWELL G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic Mag Matism[J]. Chemical Geology, 2014, 370(0): 1-18.

    Google Scholar

    [59] LI BL, ZHI Y, ZHANG L, et al. U–Pb dating, geochemistry, and Sr–Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu–(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 67: 1-10. doi: 10.1016/j.oregeorev.2014.11.008

    CrossRef Google Scholar

    [60] LI XW, HUANG X, LUO MF, et al. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2015, 105(0): 32-47.

    Google Scholar

    [61] Liu C, Mo X, Luo Z, et al. Mixing events between the crust- and Mantle-derived Mag Mas in eastern kunlun: Evidence from zircon SHRIMP II chronology[J]. Chinese Science Bulletin, 2004, 49(8): 828−834.

    Google Scholar

    [62] Liu H. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis[J]. Geochemical Journal, 2005, 39(1):1−20.

    Google Scholar

    [63] Niu Y L, Zhao Z D, Zhu D C, et al. Continental Collision Zones are Primary Sites for Net Continental Crust Growth: A Testable Hypothesis[J]. Earth‐Science Reviews, 2013, 127: 96-110

    Google Scholar

    [64] Ren H D, Wang T, Zhang L, et al. Ages, Sources and Tectonic Settings of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, central China[J]. Acta Geologica Sinica (English Edition), 2016, 90(2): 641-668.

    Google Scholar

    [65] Rudnick, R. L. Making continental crust[J]. Nature, 1995, 378, 571–578. doi: 10.1038/378571a0

    CrossRef Google Scholar

    [66] Taylor S R, Mclennan S M, Mcculloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 47(11):1897-1905.

    Google Scholar

    [67] Vervoort J D, Plank T, Prytulak J. The Hf–Nd isotopic composition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2011, 75 (20), 5903−5926

    Google Scholar

    [68] Wang H, Feng C, Li D, et al. Geology, geochronology and geochemistry of the Saishitang Cu deposit, East Kunlun Mountains, NW China: Constraints on ore genesis and tectonic setting[J]. Ore Geology Reviews, 2016, 72: 43−59.

    Google Scholar

    [69] Wang T, Jahn B M, Kovach V P, et al. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1-4):359-372

    Google Scholar

    [70] XIA R, WANG C M, DENG J, et al. Crustal thickening prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton[J]. Journal of Asian Earth Sciences, 2014, 93: 193-210. doi: 10.1016/j.jseaes.2014.07.013

    CrossRef Google Scholar

    [71] Xia R, Wang C, Qing M, et al. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and Mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 2015a, 234–235(3): 47–60.

    Google Scholar

    [72] XIA R, WANG C, QING M, et al. Molybdenite Re–Os, zircon U–Pb dating and Hf isotopic analysis of the Shuangqing Fe–Pb–Zn–Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015b, 66(0): 114-131.

    Google Scholar

    [73] XIONG FH, Ma CQ, ZHANG J, et al. Reworking of old continental lithosphere: an important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847-863. doi: 10.1144/jgs2013-038

    CrossRef Google Scholar

    [74] Yang G, Yang S, Wei L, et al. Petrogenesis and geodynamic significance of the Late Triassic Tadong adakitic pluton in West Qinling, central China[J]. International Geology Review, 2015, 57(13):1755−1771

    Google Scholar

    [75] ZHANG JY, MA CQ, XIONG FH, et al. Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China[J]. Geological Magazine, 2012, 149(05): 892-908. doi: 10.1017/S0016756811001142

    CrossRef Google Scholar

    [76] ZHU DC, WANG Q, WEINBERG RF, et al. Interplay between oceanic subduction and continental collision in building continental crust [J]. Nature communications, 2022, 13: 7141. doi: 10.1038/s41467-022-34826-0

    CrossRef Google Scholar

    [77] ZHU DC, WANG Q, WEINBERG RF, et al. Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet[J]. Annual Review of Earth and Planetary Sciences, 2023, 51: 155–88. doi: 10.1146/annurev-earth-032320-110452

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1679) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint