2023 Vol. 56, No. 6
Article Contents

XIONG Wanyukang, ZHAO Mengqi, YU Miao, LIU Xiaoyang, GONG Lei, ZENG Qinghong. 2023. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun. Northwestern Geology, 56(6): 113-139. doi: 10.12401/j.nwg.2023186
Citation: XIONG Wanyukang, ZHAO Mengqi, YU Miao, LIU Xiaoyang, GONG Lei, ZENG Qinghong. 2023. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun. Northwestern Geology, 56(6): 113-139. doi: 10.12401/j.nwg.2023186

Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun

More Information
  • The subduction−collision (accretion)−post−collision stages in the ocean−continent transition process have different magmatisms, among which the slab subduction and lithosphere delamination−thinning mechanisms have received special attention. The East Kunlun orogenic belt is located in the northern part of the Qinghai−Tibet Plateau, and is an important part of the Qin−Qi−Kun central orogenic belt, which has experienced the transformation process of the Proto−Tethys Ocean and Continent in the Early Paleozoic. Based on the geochronology, whole−rock geochemistry and Sr−Nd−Hf isotope studies of the Paleozoic granites in the Dulan area, eastern Kunlun, this paper suggests that the Langmuri Middle Silurian (429±4 Ma) granites were formed in the subduction stage of the oceanic crust. It has the property of adakitic island arc magma, which is related to the partial melting of oceanic crust under the mechanism of thermal subduction. The Xiwanggou and Harizha Early Devonian (416 ~ 403 Ma) granites were formed in the post−collision stage, showing the characteristics of I−type and A−type granites, respectively, which are related to the partial melting of the young lower crust and thinning of the lithosphere. The comprehensive regional Paleozoic granite geochemical data indicate that the difference of magmatic rocks in the east and west of East Kunlun may be caused by ocean ridge subduction.

  • 加载中
  • [1] 陈加杰, 付乐兵, 魏俊浩, 等. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约[J]. 地球科学, 2016, 41(11): 1863-1882

    Google Scholar

    CHEN Jiajie, FU Lebing, WEI Junhao, et al. Geochemical characteristics of late ordovician granodiorite in Gouli Area, eastern Kunlun orogenic belt, Qinghai Province: Implications on the evolution of Proto-Tethys ocean[J]. Earth Science, 2016, 41(11): 1863-1882.

    Google Scholar

    [2] 陈加杰, 冷成彪, 付乐兵, 等. 东昆仑德龙花岗岩成因及对古特提斯洋演化的制约[J/OL]. 地球科学, 2022: 1−17.

    Google Scholar

    CHEN Jiajie, LENG Chengbiao, FU Lebing, et al. Genesis of Delong Granite in East Kunlun Orogen and Its Implication on the Evolution of Paleo-Tethys Ocean[J/OL]. Earth Science, 2022: 1−17.

    Google Scholar

    [3] 陈能松, 孙敏, 张克信, 等. 东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄: 角闪石过剩Ar和东昆仑早古生代岩浆岩带证据[J]. 科学通报, 2000(21): 2337-2342

    Google Scholar

    CHEN Nengsong, SUN Min, ZHANG Kexin, et al. 40Ar-39Ar and U-Pb ages of metadiorite from the East Kunlun Orogenic Belt: Evidence for Early-Paleozoic magmatic zone and excess argon in amphibole minerals[J]. Cinese Science Bulletin, 45(21): 2337-2342.

    Google Scholar

    [4] 陈能松, 李晓彦, 张克信, 等. 东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示[J]. 地质科技情报, 2006(06): 1-7

    Google Scholar

    CHEN Nengsong, LI Xiaoyan, ZHANG Kexin, et al. Lithological characteristics of the Baishahe Formation to the south of Xiangride town, eastern Kunlun Mountains and its age constrained from zircon Pb-Pb dating[J]. Geological Science and Technology Information, 2006, 25(6): 1-7.

    Google Scholar

    [5] 陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地学前缘, 2013, 20(06): 240-254

    Google Scholar

    CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb age, geochemical characteristics and tectonic significance of metavolcanic rocks from Naij Tal Group, east section of East Kunlun[J]. Earth Science Frontiers, 2013, 20(6): 240-254.

    Google Scholar

    [6] 崔圆圆, 赵志丹, 蒋婷, 等. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因[J]. 岩石学报, 2013, 29(11): 4011-4024

    Google Scholar

    CUI Yuanyuan, ZHAO Zhidan, JIANG Ting, et al. Geochronology, geochemistry and petrogenesis of the Early Paleozoic granitoids in southern Jiangxi Province, China[J]. Acta Petrologica Sinica, 2013, 29(11): 4011-4024.

    Google Scholar

    [7] 邓晋福, 刘翠, 冯艳芳, 等. 关于火成岩常用图解的正确使用: 讨论与建议[J]. 地质论评, 2015, 61(04): 717-734

    Google Scholar

    DENG Jinfu, LIU Cui, FENG Yanfang, et al. On the correct application in the common igneous petrological diagrams: discussion and suggestion[J]. Geological Review, 2015, 61(4): 717-734.

    Google Scholar

    [8] 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(02): 665-678

    Google Scholar

    FENG Chengyou, WANG Song, LI Guocheng, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28(2): 665-678.

    Google Scholar

    [9] 冯建赟, 裴先治, 于书伦, 等. 东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J]. 中国地质, 2010, 37(01): 28-38

    Google Scholar

    FENG Jianbin, PEI Xianzhi, YU Shulun, et al. The discovery of the mafic-ultramafic melange in Kekesha area of Dulan County, East Kunlun region, and its LA-ICP-MS zircon U-Pb age[J]. Geology in China, 2010, 37(1): 28-38.

    Google Scholar

    [10] 国显正, 贾群子, 钱兵, 等. 东昆仑高压变质带榴辉岩和榴闪岩地球化学特征及形成动力学背景[J]. 地球科学与环境学报, 2017, 39(06): 735-750

    Google Scholar

    GUO Xianzheng, JIA Qunzi, QIAN Bing, et al. Geochemical characteristics of eclogites and garnet-amphibolites in East Kunlun high pressure metamorphic belt and their geodynamic setting[J]. Journal of Earth Sciences and Environment, 2017, 39(6): 735-750.

    Google Scholar

    [11] 国显正, 贾群子, 李金超, 等. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义[J]. 地球科学, 2018, 43(12): 4300-4318

    Google Scholar

    GUO Xianzheng, JIA Qunzi, LI Jinchao, et al. Zircon U-Pb geochronology and geochemistry and their geological significances of eclogites from east Kunlun high-pressure metamorphic belt[J]. Earth Science, 2018, 43(12): 4300-4318.

    Google Scholar

    [12] 孔会磊, 栗亚芝, 李金超, 等. 东昆仑希望沟橄榄辉长岩的岩石成因: 地球化学、锆石U-Pb年龄与Hf同位素制约[J]. 中国地质, 2021, 48(01): 173-188.

    Google Scholar

    KONG Huilei, LI Yazhi, LI Jinchao, et al. Petrogenesis of Xiwanggou olivine gabbro in East Kunlun Mountains: Constraints from geochemistry, zircon U − Pb dating and Hf isotopes[J]. Geology in China, 2021, 48(1): 173- 188.

    Google Scholar

    [13] 寇林林, 张森, 钟康惠, 等. 东昆仑五龙沟金矿矿集区韧性剪切带构造变形特点研究[J]. 中国地质, 2015, 42(02): 495-503

    Google Scholar

    KOU Linlin, ZHANG Sen, ZHONG Kanghui, et al. A study of the deformation characteristics of the ductile shear zone in the Wulonggou gold ore concentration area, East Kunlun, Qinghai[J]. Geology in China, 2015, 42(2): 495-503.

    Google Scholar

    [14] 李怀坤, 陆松年, 相振群, 等. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究[J]. 地学前缘, 2006(06): 311-321.

    Google Scholar

    LI Huaikun, LU Songnian, XIANG Zhenqun, et al. SHRIMP U-Pb zircon age of the granulite from the Qingshuiquan area, Central Eastern Kunlun Suture Zone[J]. Earth Science Frontiers, 2006, 13(6): 311.

    Google Scholar

    [15] 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(08): 2201-2210

    Google Scholar

    LI Wenyuan. The primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 2018, 34(8): 2201-2210.

    Google Scholar

    [16] 刘彬, 马昌前, 张金阳, 等. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 2012, 28(06): 1785-1807

    Google Scholar

    LIU Bin, MA Changqian, ZHANG Jinyang, et al. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes[J]. Acta Petrologica Sinica, 2012, 28(6): 1785-1807.

    Google Scholar

    [17] 刘彬, 马昌前, 郭盼, 等.东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学(中国地质大学学报), 2013, 38(5): 947−962.

    Google Scholar

    LIU Bin, MA Changqian, GUO Pan, et al. Discovery of the Middle Devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications[J]. Earth Science, 2013, 38(5): 947−962.

    Google Scholar

    [18] 刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J]. 地球学报, 2003(06): 584-588 doi: 10.3321/j.issn:1006-3021.2003.06.020

    CrossRef Google Scholar

    LIU Chengdong, MO Xuanxue, LUO Zhaohua, et al. Pb-Sr-Nd-O isotope characteristics of granitoids in East Kunlun orogenic belt[J]. Acta Geoscientia Sinica, 2003: 584-588. doi: 10.3321/j.issn:1006-3021.2003.06.020

    CrossRef Google Scholar

    [19] 陆露, 吴珍汉, 胡道功, 等. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J]. 岩石学报, 2010, 26(04): 1150-1158

    Google Scholar

    LU Lu, WU Zhenhan, HU Daogong, et al. Zircon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains[J]. Acta Petrologica Sinica, 2010, 26(4): 1150-1158.

    Google Scholar

    [20] 陆露, 张延林, 吴珍汉, 等. 东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义[J]. 地球学报, 2013, 34(04): 447-454

    Google Scholar

    LU Lu, ZHANG Yanlin, WU Zhenhan, et al. Zircon U-Pb dating of Early Paleozoic granites from the East Kunlun Mountains and its geological significance[J]. Acta Geoscientica Sinica, 2013, 34(4): 447-454.

    Google Scholar

    [21] 罗明非. 东昆仑东段早古生代—早中生代花岗岩类时空格架及构造意义[D].北京: 中国地质大学(北京), 2015

    Google Scholar

    LUO Mingfei. Spatial-temporal patter and geological implications of Early Paleozoic-Early Mesozoic granitoids in the East Kunlun Orogenic Belt (eastern segment)[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [22] 孟庆鹏. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 长春: 吉林大学, 2019

    Google Scholar

    MENG Qingpeng. Study on geological characteristics and genesis of Langmuri copper-nickel deposit in Eastern Kunlun, Qinghai [D]. Changchun: Jilin University, 2019.

    Google Scholar

    [23] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007(03): 403-414.

    Google Scholar

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and crustal growth in the East-Kunlun orogenic belt[J]. Geological Journal of China Universities, 2007, 13(3), 403-414.

    Google Scholar

    [24] 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356

    Google Scholar

    QI Shengsheng, SONG Shuguang, SHI Lianchang, et al. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 2014, 30(11): 3345-3356.

    Google Scholar

    [25] 任军虎, 柳益群, 周鼎武, 等. 东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2010, 40(04): 859-868

    Google Scholar

    REN Junhu, LIU Yiqun, ZHOU Dingwu, et al. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of Basic Dykes in the Xiaomiao Area, Eastern Kunlun[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(4): 859-868.

    Google Scholar

    [26] 田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28-45.

    Google Scholar

    TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28−45.

    Google Scholar

    [27] 王秉璋, 张金明, 李五福, 等. 昆仑河早古生代两期埃达克质侵入岩的发现及其对东昆仑碰撞造山过程的启示[J]. 岩石学报, 2023, 39(03): 763-784 doi: 10.18654/1000-0569/2023.03.09

    CrossRef Google Scholar

    WANG BingZhang, ZHANG JinMing, LI WuFu, et al. Discovery of two stages of the Early Paleozoic adakitic intrusive rocks in the Kunlun River area, East Kunlun: Implications for collisional orogenic processes[J]. Acta Petrologica Sinica, 2023, 39(3): 763-784. doi: 10.18654/1000-0569/2023.03.09

    CrossRef Google Scholar

    [28] 王强, 赵振华, 简平, 等. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学[J]. 岩石学报, 2004(02): 315-324

    Google Scholar

    WANG Qiang, ZHAO ZhenHua, JIAN Ping, et al. SHRIMP zircon geochronology and Nd-Sr isotopic geochemistry of the Dexing granodiorite porphyries[J]. Acta Petrologica Sinica, 2004, 20(2): 315-324.

    Google Scholar

    [29] 王德滋, 刘昌实, 沈渭洲, 等. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, 9(01): 44-54

    Google Scholar

    WANG Dezi, LIU Changshi, SHEN Weizhou, et al. The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J]. Acta Petrologica Sinica, 1993, 9(1): 44-54.

    Google Scholar

    [30] 王涛, 李彬, 陈静, 等. 东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义[J]. 矿物岩石, 2016, 36(02): 62-70

    Google Scholar

    WANG Tao, LI Bin, CHEN Jing, et al. Characteristics of chronology and geochemistry of the early Silurian monzogranite in the Wulonggou area, East Kunlun and its geological significance[J]. Journal of Mineralogical and Petrological Sciences, 2016, 36(2): 62-70.

    Google Scholar

    [31] 王艺龙, 李艳军, 魏俊浩, 等. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约[J]. 地球科学, 2018, 43(04): 1219-1236

    Google Scholar

    WANG Yilong, LI Yanjun, WEI Junhao, et al. Origin of Late Silurian A-type granite in Wulonggou area, East Kunlun orogen: Zircon U-Pb age, geochemistry, Nd and Hf isotopic compositions[J]. Earth Science, 2018, 43(4): 1219-1236.

    Google Scholar

    [32] 魏小林, 张得鑫, 甘承萍, 等. 卡而却卡地区新元古代变质侵入岩体的发现及其地质意义[J]. 地质找矿论丛, 2016, 31(02): 236-244

    Google Scholar

    WEI Xiaolin, ZHANG Dexin, GAN Chengping, et al. Discovery and body in the geological significance of Neoproterozoic intrusive Kaerqueka area of the East Kunlun Mountain[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(2): 236-244.

    Google Scholar

    [33] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(06): 1217-1238

    Google Scholar

    WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

    Google Scholar

    [34] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(02): 185-220

    Google Scholar

    WU Fuyuan, LI Xianhua, ZHEN Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.

    Google Scholar

    [35] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(06): 1627−1674

    Google Scholar

    WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics [J]. Acta Petrologica Sinica, 2020, 36(6): 1627−1674.

    Google Scholar

    [36] 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92−108.

    Google Scholar

    WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92−108.

    Google Scholar

    [37] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    WU Yuanbao and ZHENG Yongfei. Zircon genetic mineralogy and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [38] 徐恒, 豆松, 李晓峰, 等. 云南凤庆邦漂地区花岗伟晶岩地球化学及其成因[J]. 矿物岩石, 2022, 42(01): 42-53

    Google Scholar

    XU Heng, DOU Feng, LI Xiaofeng, et al. Geochemistry and genesis of granitic pegmatite in Bangpiao area, Fengqing county, Yunnan provice[J]. Mineralogy and Petrology, 2022, 42(1): 42-53.

    Google Scholar

    [39] 许继峰, 邬建斌, 王强, 等. 埃达克岩与埃达克质岩在中国的研究进展[J]. 矿物岩石地球化学通报, 2014, 33(01): 6-13

    Google Scholar

    XU JiFeng, WU Jian Bin, WANG Qiang, et al. Research advances of adakites and adakitic rocks in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1): 6-13.

    Google Scholar

    [40] 许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 2006, 33(02): 221-238

    Google Scholar

    XU Zhiqin, YANG Jingsui, LI Haibin, et al. Qinghai-Tibet Plateau and continental dynamics: Deep driving forces of terrane consolidation collisional orogenesis and plateau uplift[J]. Geology of China, 2006, 33(2): 221-238.

    Google Scholar

    [41] 尹福光, 罗亮, 任飞. 再造西南“三江”造山带洋陆转换过程中的构造与古地理[J]. 地质通报, 2022, 41(11): 1899-1914 doi: 10.12097/j.issn.1671-2552.2022.11.001

    CrossRef Google Scholar

    YIN Fuguang, LUO Liang, REN Fei. Reconstructing the tectonics and paleogeography during the ocean-land transition of the “Sanjiang” orogenic belt in southwest China[J]. Geological Bulletin of China, 2022, 41(11): 1899-1914. doi: 10.12097/j.issn.1671-2552.2022.11.001

    CrossRef Google Scholar

    [42] 张斌, 孔会磊, 李智明, 等. 东昆仑哈日扎铅锌多金属矿区英云闪长岩锆石U-Pb定年、地球化学及其地质意义[J]. 地质科技情报, 2016, 35(05): 9-17

    Google Scholar

    ZHANG Bin, KONG Huilei, LI Zhiming, et al. Zircon U-Pb dating, geochemical and geological significance of the tonalites from the Harizha lead-zinc polymetallic mine in east Kunlun mountains[J]. Geological Science and Technology Information, 2016, 35(5): 9-17.

    Google Scholar

    [43] 张亮, 李碧乐, 刘磊, 等. 东昆仑五龙沟地区早泥盆世双峰式侵入岩年代学、地球化学及其地质意义[J]. 岩石学报, 2021, 37(07): 2007-2028 doi: 10.18654/1000-0569/2021.07.04

    CrossRef Google Scholar

    ZHANG Liang, LI Bile, LIU Lei, et al. Geochronology, geochemistry and geological significance of the Early Devonian bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen[J]. Acta Petrologica Sinica, 2021, 37(7): 2007-2028. doi: 10.18654/1000-0569/2021.07.04

    CrossRef Google Scholar

    [44] 张亚峰, 裴先治, 丁仨平, 等. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 地质通报, 2010, 29(01): 79-85

    Google Scholar

    ZHANG Yafeng, PEI Xianzhi, DING SaPing, et al. LA-ICP-MS zircon U-Pb age of quartz diorite at the Kekesha area of Dulan County, eastern section of the East Kunlun orogenic belt, China and its significance[J]. Geological Bulletin of China, 2010, 29(1): 79-85.

    Google Scholar

    [45] 张耀玲, 胡道功, 石玉若, 等. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 2010, 29(11): 1614-1618

    Google Scholar

    ZHANG Yaolin, HU Daogong, SHI Yuruo, et al. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China[J]. Geological Bulletin of China, 2010, 29(11): 1614-1618.

    Google Scholar

    [46] 张泽明, 丁慧霞, 董昕, 等. 俯冲带部分熔融[J]. 岩石学报, 2020, 36(09): 2589-2615 doi: 10.18654/1000-0569/2020.09.01

    CrossRef Google Scholar

    ZHANG Zeming, DING Huixia, DONG Xin, et al. Partial melting of subduction zones[J]. Acta Petrologica Sinica, 2020, 36(9): 2589-2615. doi: 10.18654/1000-0569/2020.09.01

    CrossRef Google Scholar

    [47] 张泽明, 丁慧霞, 董昕, 等. 俯冲带变质作用与构造机制[J]. 岩石学报, 2021, 37(11): 3377-3398 doi: 10.18654/1000-0569/2021.11.08

    CrossRef Google Scholar

    ZHANG Zeming, DING Huixia, DONG Xin, et al. Metamorphism and tectonic mechanisms of subduction zones[J]. Acta Petrologica Sinica, 2021, 37(11): 3377-3398. doi: 10.18654/1000-0569/2021.11.08

    CrossRef Google Scholar

    [48] 朱云海, 林启祥, 贾春兴, 等. 东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义[J]. 中国科学(D辑: 地球科学), 2005(12): 1112-1119

    Google Scholar

    ZHU Yunhai, LIN Qixiang, JIA Chunxing, et al. SHRIMP zircon ages of the Early Paleozoic volcanic rocks in the East Kunlun Orogen and their geological significance[J]. Science in China: SerD, 2005, 35(12): 1112-1119.

    Google Scholar

    [49] Barth M G, McDonough W F, Rudnick Roberta L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165: 197-213. doi: 10.1016/S0009-2541(99)00173-4

    CrossRef Google Scholar

    [50] Bonin B. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1–29.

    Google Scholar

    [51] Breitsprecher K, Thorkelson D J, Groome W G, et al. Geochemical confirmation of the Kula-Farallon slab window beneath the Pacific Northwest in Eocene time[J]. Geol , 2003, 31, 351. doi: 10.1130/0091-7613(2003)031<0351:GCOTKF>2.0.CO;2

    CrossRef Google Scholar

    [52] Chen J J, Fu L B, Selby D, et al. Multiple episodes of gold mineralization in the East Kunlun Orogen, western Central Orogenic Belt, China: Constraints from Re-Os sulfide geochronology[J]. Ore Geology Reviews , 2020a, 123, 103587. doi: 10.1016/j.oregeorev.2020.103587

    CrossRef Google Scholar

    [53] Chen J J, Fu L B, Wei J H, et al. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian–Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China[J]. Lithos, 2020b, 356-357(3): 105304.

    Google Scholar

    [54] Defant M J and Drummond M S. Derivation of some morden arc magmas by of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [55] Dong G C, Luo M F, Mo X X, et al. Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes[J]. Geoscience Frontiers, 2018, 9(5): 1383-1397. doi: 10.1016/j.gsf.2018.03.003

    CrossRef Google Scholar

    [56] Dong J L, Song S G, Su L, et al. Early Devonian mafic igneous rocks in the East Kunlun Orogen, NW China: Implications for the transition from the Proto- to Paleo-Tethys oceans[J]. Lithos, 2020, 376-377(11): 105771.

    Google Scholar

    [57] Dong Y P, He D F, Sun S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186(11): 231-261.

    Google Scholar

    [58] Drummond M S, Defant M J, Kepezhinskas P K. Petrogenesis of slab-derived trondhjemite- tonalite-dacite/adakite magmas[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1996, 87(1-2), 205-215. doi: 10.1017/S0263593300006611

    CrossRef Google Scholar

    [59] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20 (7): 641–644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [60] Elburg M A, Van Bergen M, Hoogewerff J, et al. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia[J]. Geochimica et Cosmochimica Acta, 2002, 66(15): 2771-2789. doi: 10.1016/S0016-7037(02)00868-2

    CrossRef Google Scholar

    [61] Faure G. Principles of Isotope Geology[M]. 2nd ed. New York: John Wiley and Sons, 1986: 567.

    Google Scholar

    [62] Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [63] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2005, 432 (7019): 892-897.

    Google Scholar

    [64] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [65] He D F, Dong Y P, Liu X M, et al. Tectonothermal events in East Kunlun, Northern Tibetan Plateau: evidence from zircon U-Pb geochronology[J]. Gondwana Res, 2016, 30: 179–190. doi: 10.1016/j.gr.2015.08.002

    CrossRef Google Scholar

    [66] Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X

    CrossRef Google Scholar

    [67] Huang H, Niu Y L, Mo X X. Garnet effect on Nd-Hf isotope decoupling: evidence from the Jinfosi batholith, Northern Tibetan Plateau[J]. Lithos, 2017, 274: 31-38.

    Google Scholar

    [68] Kong X C, Li S Z, Suo Y H, et al. Hot and cold subduction systems in the Western Pacific Ocean: insights from heat flows: Heat flows in the Western Pacific Ocean[J]. Geol. J, 2016, 51: 593-608. doi: 10.1002/gj.2802

    CrossRef Google Scholar

    [69] Li R B, Pei X Z, Li Z C, et al. Geochemistry and zircon U–Pb geochronology of granitic rocks in the Buqingshan tectonic mélange belt, northern Tibet Plateau, China and its implications for Prototethyan evolution[J]. Journal of Asian Earth Sciences, 2015, 105: 374–389. doi: 10.1016/j.jseaes.2015.02.004

    CrossRef Google Scholar

    [70] Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth Sci. Rev, 2018, 186, 37–75. doi: 10.1016/j.earscirev.2017.01.011

    CrossRef Google Scholar

    [71] Luais B, de Veslud C L C, Géraud Y, et al. Comparative behavior of Sr, Nd and Hf isotopic systems during fluid-related deformation at middle crust levels[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2961-2977. doi: 10.1016/j.gca.2008.12.026

    CrossRef Google Scholar

    [72] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [73] Martin H. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    [74] McCrory P A, Willson D S, Stanley R G. Continuing evolution of the Pacific-Juan de Fuca-North America slab window system—A Trench-ridge-transform example from the Pacific rim[J]. Tectonophysics, 2009, 464(1-4): 30-42. doi: 10.1016/j.tecto.2008.01.018

    CrossRef Google Scholar

    [75] Mckenzie D P. Some remarks on the movement of small melt fractions in the mantle[J]. Earth and Planetary Science Letters, 1989, 95: 53-72. doi: 10.1016/0012-821X(89)90167-2

    CrossRef Google Scholar

    [76] Meng F C, Zhang J X, Cui M. H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 2013 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007

    CrossRef Google Scholar

    [77] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3–4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [78] Molnar P, England P. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth and Planetary Science Letters [J], 1995, 131(1-2): 57-70.

    Google Scholar

    [79] Norbu N, Liu Y G, Li J C, et al. The Silurian-Devonian granitoids in the East Kunlun orogenic belt, northern Qinghai-Tibetan plateau, China: origin and tectonic implications[J]. Geosci J, 2021, 25: 763–786. doi: 10.1007/s12303-021-0017-3

    CrossRef Google Scholar

    [80] Pearce J A. Sources and settings of granitic rocks[J]. Episodes 19, 1996, 120–125.

    Google Scholar

    [81] Peacock S M and Wang K. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan[J]. Science, 1999, 286(5441): 937-939. doi: 10.1126/science.286.5441.937

    CrossRef Google Scholar

    [82] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63−81.

    Google Scholar

    [83] Roberts M P and Clemens J D. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21(9): 825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    CrossRef Google Scholar

    [84] Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42, 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [85] Tatsumi Y, Hanyu T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high‐Mg andesite formation in the Setouchi volcanic belt, SW Japan[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9).

    Google Scholar

    [86] Thompson A B. Some time-space relationships for crustal melting and granitic intrusion at various depths[J]. Geological Society, 1999, 168(1): 7-5. doi: 10.1144/GSL.SP.1999.168.01.02

    CrossRef Google Scholar

    [87] Thorkelson D J and Breitsprecher K. Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas[J]. Lithos, 2005, 79, 25-41. doi: 10.1016/j.lithos.2004.04.049

    CrossRef Google Scholar

    [88] Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    CrossRef Google Scholar

    [89] Wang X X, Hu N G, Wang T, et al. Late Ordovician Wanbaogou granitoid pluton from the southern margin of the Qaidam basin: Zircon SHRIMP U-Pb age, Hf isotope and geochemistry[J]. Acta Petrologica Sinica, 2012, 28(9): 2950-2962.

    Google Scholar

    [90] Whalen J B, Currie K L, Chappell B W. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [91] Wilson M. Igneous Petrogenesis: A Global Tectonic Approach[M]. Chapman and Hall, London, 1989.

    Google Scholar

    [92] Windley B F and Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 2018, 61, 73-87. doi: 10.1016/j.gr.2018.05.003

    CrossRef Google Scholar

    [93] Xia R, Wang C, Qing M, et al. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J]. Ore Geology Reviews, 2015, 66, 114-131. doi: 10.1016/j.oregeorev.2014.10.024

    CrossRef Google Scholar

    [94] Xin W, Sun F Y, Li L, et al. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension[J]. Lithos, 2018, 312–313, 108–127.

    Google Scholar

    [95] Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    CrossRef Google Scholar

    [96] Yang H, Zhang H F, Xiao W J, et al. Multiple Early Paleozoic granitoids from the southeastern Qilian orogen, NW China: Magma responses to slab roll–back and break–off[J]. Lithos, 2021, 380–381: 105910.

    Google Scholar

    [97] Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: In situ U–Pb dating and Hf–isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology, 2007, 153(2): 177–190.

    Google Scholar

    [98] Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics, 1996, 258(1−4): 215−231.

    Google Scholar

    [99] Yu M, Dick J M, Feng C Y, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 2020, 191(4): 104168.

    Google Scholar

    [100] Zhang J, Yu M, Wang H, et al. Geodynamic Setting and Cu-Ni Potential of Late Permian Xiwanggou Mafic-Ultramafic Rocks, East Kunlun Orogenic Belt, NW China[J]. Frontiers in Earth Science, 2021, 9: 666967. doi: 10.3389/feart.2021.666967

    CrossRef Google Scholar

    [101] Zhang J W, Liang X, Wang F Y, et al. CorelKit: An Extensible CorelDraw VBA Program for Geoscience Drawing[J]. Journal of Earth Science, 2022, 1-23.

    Google Scholar

    [102] Zhou B, Dong Y, Zhang F, et al. Geochemistry and zircon U-Pb geochronology of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau: origin and tectonic implications[J]. Journal of Asian Earth Sciences, Special Issue on Crustal evolution in Asia: Correlations and connections, 2016, 130: 265–281.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(11)

Article Metrics

Article views(1479) PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint