2023 Vol. 56, No. 5
Article Contents

ZHA Xianfeng, JI Wenhua, GU Pingyang, LÜ Pengrui, WANG Guoqiang, CHEN Ruiming, KANG Lei, LI Meng, SUN Jiming, JING Delong, WANG Kai, LUO Keyong. 2023. Tectonic Evolution and Key Geological Mineral Issues of Arabian Shield. Northwestern Geology, 56(5): 204-213. doi: 10.12401/j.nwg.2023075
Citation: ZHA Xianfeng, JI Wenhua, GU Pingyang, LÜ Pengrui, WANG Guoqiang, CHEN Ruiming, KANG Lei, LI Meng, SUN Jiming, JING Delong, WANG Kai, LUO Keyong. 2023. Tectonic Evolution and Key Geological Mineral Issues of Arabian Shield. Northwestern Geology, 56(5): 204-213. doi: 10.12401/j.nwg.2023075

Tectonic Evolution and Key Geological Mineral Issues of Arabian Shield

  • The Arabian Shield, located in the southwestern Arabian Plate, constitutes the Nubia–Arabian Shield with the Nubia to the west of the Red Sea, and is an important part of the Pan–Africa Orogeny that formed during the convergence of eastern and western Gondwana in Neoproterozoic. During compiling the technical bid of “Detailed Geological Mapping of the Arabian Shield, Kingdom of Saudi Arabia”, both progress on geological survey and researches of the Arabian Shield has been comprehensively analyzed. The geological structure of the Arabian Shield is characterized by eight terrenes and ophiolitic mélange zones or shearing zones between them, and is overlain by Neoproterozoic sedimentary basins. Based on these analyses, the tectonic evolution of the Arabian Shield can be classified into four tectonic stages, and a series of metal deposits have been formed during the ocean–continent tectonic transformational process in Neoproterozoic. Moreover, the geological problems related to strata, magmatism, tectonic evolution, and mineralization of the Arabian Shield have been sorted out, as well as suggestions have been put forward for the detailed geological mapping in the future.

  • 加载中
  • [1] 鲍佩声, 苏犁, 王军, 等. 雅鲁藏布江蛇绿岩[M]. 北京: 地质出版社, 2015, 1−251

    Google Scholar

    BAO Peisheng, SU Li, WANG Ju, et al. The Yarlung Zangbo River Ophiolite [M]. Beijing: Geological Publishing House, 2015, 1−251.

    Google Scholar

    [2] 李福林, 向文帅, 王成刚, 等. 东北非重要铜金矿产资源分布及赋存形式[J]. 地质通报, 2022, 41(1): 119-128 doi: 10.12097/j.issn.1671-2552.2022.01.009

    CrossRef Google Scholar

    LI Fulin, XIANG Wenshuai, WANG Cheng’gang, et al. Distribution and occurring state of copper-gold mineral resources in North Africa [J]. Geological Bulletin of China, 2022, 41(1): 119-128. doi: 10.12097/j.issn.1671-2552.2022.01.009

    CrossRef Google Scholar

    [3] 吕鹏瑞. 丝绸之路沿线29国矿业投资环境评价[M]. 北京: 地质出版社, 2019, 184−195

    Google Scholar

    [4] 魏浩, 徐九华, 王建雄, 等. 非洲东北部阿拉伯-努比亚地盾(ANS)构造演化与金成矿作用[J]. 地质与勘探, 2015, 51(2): 383-394 doi: 10.13712/j.cnki.dzykt.2015.02.020

    CrossRef Google Scholar

    WEI Hao, XU Jiuhua, WANG Jianxiong, et al. Tectonic evolution and gold mineralization in the Arabian Nubian Shield (ANS), Northeastern Africa [J]. Geology and Exploration, 2015, 51(2): 383-394. doi: 10.13712/j.cnki.dzykt.2015.02.020

    CrossRef Google Scholar

    [5] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020.36(6): 1627-1674 doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    WU Fuyuan, WANG Bo, ZHAO Liang, et al. Tethyan geodynamics [J]. Acta Petrologica, 2020, 36(6): 1627-1674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [6] 向文帅, 赵凯, 曾国平, 等. 东北非VMS矿床地质特征及研究进展[J]. 地质通报, 2022, 41(1): 129-140 doi: 10.12097/j.issn.1671-2552.2022.01.010

    CrossRef Google Scholar

    XIANG Wenshuai, ZHAO Kai, ZENG Guoping, et al. Geology of VMS deposits in Northeast Africa and their research progress [J]. Geological Bulletin of China, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010

    CrossRef Google Scholar

    [7] 朱清, 顾本杰, 邹谢华, 等. 试论中非矿业合作的机遇与挑战[J]. 西北地质, 2023, 56(1): 174-185 doi: 10.12401/j.nwg.2022032

    CrossRef Google Scholar

    ZHU Qing, GU Benjie, ZOU Xiehua, et al. On the opportunities and challenges of China-Africa Mining Cooperation [J]. Northwestern Geology, 2023, 56(1): 174-185. doi: 10.12401/j.nwg.2022032

    CrossRef Google Scholar

    [8] Abd-Allah A. M. A. , El-Fakharani A. , El-Sawy E. K. , et al. Fatima suture: A new amalgamation zone in the western Arabian Shield, Saudi Arabia [J]. Precambrian Research, 2014, 249: 57-78. doi: 10.1016/j.precamres.2014.05.002

    CrossRef Google Scholar

    [9] Abu-Alam T. S. , Hamdy M. H. Thermodynamic modelling of Sol Hamed serpentinite, South Eastern Desert of Egypt: Implication for fluid interaction in the Arabian-Nubian Shield ophiolites [J]. Journal of African Earth Sciences, 2014, 99: 7-23. doi: 10.1016/j.jafrearsci.2014.06.001

    CrossRef Google Scholar

    [10] Abuamarah B. A. Petrogenetic evolution of Cryogenian Halaban ophiolite, Saudi Arabia: A fragment of fore-arc oceanic lithosphere mantle [J]. Lithos, 2020, 356-356: 1-15.

    Google Scholar

    [11] Agar R. A. The Najd fault system revisited; a two-way strike-slip orogen in the Saudi Arabian Shield [J]. Journal of structural Geology, 1987, 9(1): 41-48. doi: 10.1016/0191-8141(87)90042-3

    CrossRef Google Scholar

    [12] Agard P. , Omrani J. , Jolivet L. , et al. Zagros orogeny: A subduction-domianated process [J]. Geological Magazine, 2011, 148(5-6): 692-725. doi: 10.1017/S001675681100046X

    CrossRef Google Scholar

    [13] Ahmed A. H. , Habtoor A. Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al’Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia [J]. Ore Geology Reviews, 2015, 67: 279-296. doi: 10.1016/j.oregeorev.2014.12.018

    CrossRef Google Scholar

    [14] Ahmed A. H. , Harbi H. M. , Habtoor A. Compositional variations and tectonic settings of podiform chromitites and associated ultramafific rocks of the Neoproterozoic ophiolite at Wadi Al Hwanet, northwestern Saudi Arabia [J]. Journal of Asian Earth Sciences, 2012, 56: 118-134. doi: 10.1016/j.jseaes.2012.05.002

    CrossRef Google Scholar

    [15] Bamousa A. O. Infracambrian superimposed tectonics in the Late Proterozoic units of Mount Ablah area, southern Asir Terrane, Arabian Shield, Saudi Arabia [J]. Arabian Journal of Geosciences, 2013, 6: 2035-2044. doi: 10.1007/s12517-011-0490-5

    CrossRef Google Scholar

    [16] Bezenjani R. N. , Pease V. , Whitehouse M. J. , et al. Detrital zircon geochronology and provenance of the NeoproterozoicHammamat Group (Igla Basin), Egypt and the Thalbah Group, NWSaudi Arabia: Implications for regional collision tectonics [J]. Precambrian Research, 2014, 245: 225-243. doi: 10.1016/j.precamres.2013.12.002

    CrossRef Google Scholar

    [17] Cole J C. Geology of the Aban al Ahmar Quadrangle, Sheet 25F, Kingdom of Saudi Arabia [R]. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map, 1988, GM 105.

    Google Scholar

    [18] Cox G. M. , Foden J. , Collins A. S. Late Neoproterozoic adakitic magmatism of the eastern Arabian Nubian Shield [J]. Geoscience Frontiers, 2019, 10: 1981-1992. doi: 10.1016/j.gsf.2017.12.006

    CrossRef Google Scholar

    [19] Cox G. M. , Lewis C. J. , Collins A. S. , et al. Ediacaran terrane accretion within the Arabian-Nubian Shield [J]. Gondwana Research, 2012, 21: 341-352. doi: 10.1016/j.gr.2011.02.011

    CrossRef Google Scholar

    [20] Dawood Y. H. , El-Naby H. H. A. Genesis of Uranyl mineralization in the Arabian Nubian Shield: A review [J]. Journal of Asian Earth Sciences, 2022, 225: 105047. doi: 10.1016/j.jseaes.2021.105047

    CrossRef Google Scholar

    [21] Divi R. S. , Zakir F. A. , Al-Mishwat. Structural and Metallogenic Framework of the Arabian Shield, the Northern Join Between East and West Gondwana [J]. Gondwana Research, 2001, 4(4): 607-608.

    Google Scholar

    [22] Doebrich J. L. , Al. Jehani A. M. , Siddiqui, A. A. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogeny [J]. Precambrian Research, 2007, 158: 17-50. doi: 10.1016/j.precamres.2007.04.003

    CrossRef Google Scholar

    [23] Duncan R. , Kent A. J. R. , Thornber C. R. , et al. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia [J]. Journal of volcanology and Geothermal Research, 2016, 313: 1-14. doi: 10.1016/j.jvolgeores.2016.01.010

    CrossRef Google Scholar

    [24] El-Sawy K. E. , Masrouhi A. Structural style and kinematic evolution of Al Ji'lani area, Ad Dawadimi terrane, Saudi Arabia [J]. Journal of African Earth Sciences, 2019, 150: 451-465. doi: 10.1016/j.jafrearsci.2018.08.021

    CrossRef Google Scholar

    [25] Gahlan H. A. , Azer M. K. , Al-Hashim M. H. , et al. New insights and constraints on the late Neoproterozoic post-collisional mafic magmatism in the Arabian Shield, Saudi Arabia [J]. Lithos, 2023, 436-437: 106989. doi: 10.1016/j.lithos.2022.106989

    CrossRef Google Scholar

    [26] Gahlan H A, Azer M K, Asimow P D, et al. Geochemistry, petrogenesis and alteration of rare-metal-bearing granitoids and mineralized silexite of the Al-Ghurayyah stock, Arabian Shield, Saudi Arabia [J]. Journal of Earth Science, 2022,https://kns.cnki.net/kcms/detail/42.1788.P.20220711.1357.002.html

    Google Scholar

    [27] Genna A. , Nehlig P. , Goff E. L. , et al. Proterozoic tectonism of the Arabian Shield [J]. Precambrian Research, 2002, 117: 21-40. doi: 10.1016/S0301-9268(02)00061-X

    CrossRef Google Scholar

    [28] Habtoor A. M. , Ahmed A. H. , Akizawa N. , et al. Chemical homogeneity of high-Cr chromitites as indicator for widespread invasion of boninitic melt in mantle peridotite of Bir Tuluha ophiolite, Northern Arabian Shield, Saudi Arabia [J]. Ore Geology Reviews, 2017, 90: 243-259. doi: 10.1016/j.oregeorev.2017.03.010

    CrossRef Google Scholar

    [29] Hamimi Z. , El-Sawy E. K. , El-Fakharani A. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia [J]. Journal of African Earth Sciences, 2014, 99: 51-63. doi: 10.1016/j.jafrearsci.2013.09.010

    CrossRef Google Scholar

    [30] Harbi H. M. , Ali K. A. , Eldougdoug A. Geochemistry and U-Pb zircon dating constraints of some plutonicrocks along Bir Tawilah shear zone, central Saudi Arabia: Implicationfor magma peterogenesis and age of gold mineralization [J]. Chemie der Erde, 2016, 76: 309-324. doi: 10.1016/j.chemer.2016.04.004

    CrossRef Google Scholar

    [31] Harbi H. M. , Surour A. A. , Davidson G. J. Genesis of Neoproterozoic Au-bearing volcanogenic sulfides and quartz veins in the Ar Rjum goldfield, Saudi Arabia [J]. Ore Geology Reviews, 2014, 58: 110-125. doi: 10.1016/j.oregeorev.2013.10.010

    CrossRef Google Scholar

    [32] Hassan M. , Alam T. S. A. , Hauzenberger C. , et al. Geochemical signature variation of pre-, syn-, and post-shearing intrusives within the Najd Fault System of western Saudi Arabia [J]. Lithos, 2016, 263: 274-291. doi: 10.1016/j.lithos.2016.06.024

    CrossRef Google Scholar

    [33] Helmy H. M. , Mogessie A. Gabbro Akarem, Eastern Desert, Egypt: Cu-Ni-PGE mineralization in a concentrically zoned mafic-ultramafic complex [J]. Mineralium Deposita, 2001, 36(1): 58-71. doi: 10.1007/s001260050286

    CrossRef Google Scholar

    [34] Horton B. K. , Hassanzadeh J. , Stockli D. F. , et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostriatigraphy and collisional tectonics [J]. Tectonophysics, 2008, 451(1-4): 97-122. doi: 10.1016/j.tecto.2007.11.063

    CrossRef Google Scholar

    [35] Howari F. , Goodell P. , Salman A. Metallogenic evolution of Uranium deposits in the Middle East and North Africa deposits [J]. Journal of African Earth Sciences, 2016, 114: 30-42. doi: 10.1016/j.jafrearsci.2015.11.009

    CrossRef Google Scholar

    [36] Ibrahim E. , El-Motaal E. A. , Lashin A. , et al. Faulting intersections and magma-feeding zones in Tihamat-Asir, Southeast Red Sea rift: Aeromagnetic and structural perspective [J]. Journal of African Earth Sciences, 2021, 173: 1-9.

    Google Scholar

    [37] Johnson P. R. Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogeny [J]. Precambrian Research, 2003, 123: 321-337. doi: 10.1016/S0301-9268(03)00074-3

    CrossRef Google Scholar

    [38] Johnson P. R. , Abdelsalam M. G. , Stern R. J. The Bi’r Umq-Nakasib suture zone in the Arabian-Nubian Shield: A key to understanding crustal growth in the East African Orogen [J]. Gondwana Research, 2003, 6(3): 523-530. doi: 10.1016/S1342-937X(05)71003-0

    CrossRef Google Scholar

    [39] Johnson P. R. , Andresen A. , Collins A. S. , et al. Late Cryogenian–Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen [J]. Journal of African Earth Sciences, 2011, 61: 167-232. doi: 10.1016/j.jafrearsci.2011.07.003

    CrossRef Google Scholar

    [40] Johnson P. R. , Stewart I. C. F. Magnetically inferred basement structure in central Saudi Arabia [J]. Tectonophysics, 1995, 245: 37-52. doi: 10.1016/0040-1951(94)00179-D

    CrossRef Google Scholar

    [41] Johnson P. R. , Zoheir B. A. , Ghebreab W. , ea al. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield [J]. South African of Geology, 2017, 120(1): 63-76. doi: 10.25131/gssajg.120.1.63

    CrossRef Google Scholar

    [42] Kamilli R. , Criss R. E. Genesis of the Silsilah Tin deposit, Kingdom of Saudi Arabia [J]. Economic Geology, 1996, 91: 1414-1434. doi: 10.2113/gsecongeo.91.8.1414

    CrossRef Google Scholar

    [43] Koshnaw RI. , Stochili DF. , Schlunegger F. Timing of the Arabia-Eurasia continental collision: Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the Northwest Zagros hinterland, Kurdistan region of Iraq [J]. Geology, 2019, 47(1): 47-50. doi: 10.1130/G45499.1

    CrossRef Google Scholar

    [44] Küster D. Granitoid-hosted Ta mineralization in the Arabian–Nubian Shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework [J]. Ore Geology Reviews, 2009, 35: 68−86.

    Google Scholar

    [45] Laboun A. A. Regional tectonic and megadepositional cycles of the Paleozoic of northwestern and central Saudi Arabia [J]. Arabian Journal of Geosciences, 2013, 6: 971-984. doi: 10.1007/s12517-011-0401-9

    CrossRef Google Scholar

    [46] Mahdy N M, Kalioubi B A, Wohlgemuth-Ueberwasser C C, et al. Petrogenesis of U- and Mo-bearing A2-type granite of the Gattar batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt: Evidence for the favorability of host rocks for the origin of associated ore deposits [J]. Ore Geology Reviews, 2015, 71: 57−81.

    Google Scholar

    [47] Matsah M. I. M. , Kusky T. M. Analysis of landsat TM ratio imagery of the Halaban Zarghat fault and related Jifn basin, NE Arabian Shield [J]. Gondwana Research, 2001, 4(2): 182. doi: 10.1016/S1342-937X(05)70686-9

    CrossRef Google Scholar

    [48] Metcalfe I. Multiple Tethyan ocean basins and orogenic belts in Asia [J]. Gondwana Research, 2021, 100: 87-130. doi: 10.1016/j.gr.2021.01.012

    CrossRef Google Scholar

    [49] Muricia H. , Nemeth K. , Moufti M. R. , et al. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields [J]. Journal of Asian Earth Sciences, 2014, 84: 131-145. doi: 10.1016/j.jseaes.2013.10.002

    CrossRef Google Scholar

    [50] Nawab Z A. Geology of the Al-Amar-Idsas region of the Arabin Shield [M]. Red Sea Commission: Jeddah, Saudi Arabia, 1979, 1-39.

    Google Scholar

    [51] Robinson F. A. , Foden J. D. , Collins A. S. Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia [J]. Lithos, 2015, 220-223: 97-115. doi: 10.1016/j.lithos.2015.01.021

    CrossRef Google Scholar

    [52] Sangster D F, Abdulhay G J S. Base metal (Cu-Pb-Zn) mineralization in the Kingdom of Saudi Arabia [M]. Saudi Geological Survey (Jeddah), 2005, 1−128.

    Google Scholar

    [53] Sehsah H. , Eldosouky A. M. , Afandy A. H. E. Unpaired ophiolite belts in the Neoproterozoic Allaqi-Heiani Suture, the Arabian-Nubian Shield: Evidences from magnetic data [J]. Journal of African Earth Sciences, 2019, 156: 26-34. doi: 10.1016/j.jafrearsci.2019.05.002

    CrossRef Google Scholar

    [54] Sillitoe R. H. , Perello J. , Creaser R. A. , et al. Age of the Zambian copperbelt [J]. Mineralium deposita, 2017, 52(8): 1245-1268. doi: 10.1007/s00126-017-0726-8

    CrossRef Google Scholar

    [55] Stacey J. S. , Hedge C. E. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield [J]. Geology, 1984, 12: 310-313.

    Google Scholar

    [56] Stacey J. S. , Stoeser D. B. , Greenwood W. R. , et al. U-Pb zircon geochronology and geological evolution of the Halaban-Al Amar region of the Eastern Arabian Shield, Kingdom of Saudi Arabia [J]. Journal of the Geological Society, London, 1984, 141: 1043-1055. doi: 10.1144/gsjgs.141.6.1043

    CrossRef Google Scholar

    [57] Stern R. , Johnson P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis [J]. Earth-Science Review, 2010, 101: 29-67. doi: 10.1016/j.earscirev.2010.01.002

    CrossRef Google Scholar

    [58] Stern R. J. , Mukherjee S. K. , Miller N. , et al. ~750 Ma banded iron formation from the Arabian-Nubian Shield-Implication for understanding Neoproterozoic tectonics, volcanism, and climate change [J]. Precambrian Research, 2013, 239: 79-94. doi: 10.1016/j.precamres.2013.07.015

    CrossRef Google Scholar

    [59] Stoeser D B, Elliott J E. Post-orogenic peralkaline and calc-alkaline granites and associated mineralization of the Arabian Shield, Kingdom of Saudi Arabia [J]. Evolution and Mineralization of the Arabian-Nubian Shield, 1980, 1-23.

    Google Scholar

    [60] Stoeser D. B. , Frost C. D. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian shield terranes [J]. Chemical Geology, 2006, 226(3-4): 163-188. doi: 10.1016/j.chemgeo.2005.09.019

    CrossRef Google Scholar

    [61] Stoeser D B, Stacey J S. Evolution, U–Pb geochronology, and isotope geology of the Pan-African Nabitah orogenic belt of the Saudi Arabian shield. In: El-Gaby, S. , Greiling, R. O. , The Pan-African Belt of Northeast Africa and Adjacent Areas [M]. Vieweg and Sohn, Braunschweig/Weisbaden, 1988, 227-288.

    Google Scholar

    [62] Surour A. A. , Bakhsh R. Microfabrics and microchemistry of sulfide ores from the 640 FW-Elevel at the Al Amar gold mine, Saudi ArabiaAdel [J]. Journal of Microscopy and Ultrastructure, 2013, 1: 96-110. doi: 10.1016/j.jmau.2013.12.003

    CrossRef Google Scholar

    [63] Surour A. A. , Harbi H. M. , Ahmed A. H. The Bi’r Tawilah deposit, central western Saudi Arabia: Supergene enrichment of a Pan-African epithermal gold mineralization [J]. Journal of African Sciences, 2014, 89: 149-163.

    Google Scholar

    [64] Vaslet D, Manivit J, Le Nindre Y, et al. Geologic map of the Wadi Ar Rayn quadrangle, sheet 23H, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry of Mineral Resources Geoscience Map [R], 1983, GM-63A.

    Google Scholar

    [65] Wallace C A. Lithofacies and Depositional Environment of the Maraghan Formation, and Speculation on the Origin of Gold in Ancient Mines, an Najadi area, Kingdom of Saudi Arabia [R]. Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report, 1986, USGS-OF-06-6.

    Google Scholar

    [66] Whitehouse M. J. , Stoeser D. B. , Stacey J. S. The Khida Terrane-Geochronological and isotopic evidence for Paleoproterozoic and Archean crust in the eastern Arabian shield of Saudi Arabia [J]. Gondwana Research, 2001, 4: 200-202. doi: 10.1016/S1342-937X(05)70695-X

    CrossRef Google Scholar

    [67] Zhao G. C. , Wang Y. J. , Huang B. C. , et al. Geological reconstruction of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003

    CrossRef Google Scholar

    [68] Zoheir B A. Structural controls, temperature–pressure conditions and fluid evolution of orogenic gold mineralisation at the Betam mine, south Eastern Desert, Egypt[J]. Mineralium Deposita, 2008, 43(1): 79−95.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3768) PDF downloads(1751) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint