2023 Vol. 56, No. 5
Article Contents

WANG Peng, BAI Jianke, WANG Yanhe, HAN Hao, SONG Yiwei, ZHOU Lin, ZHANG Jiting, XIAO Ziheng, CHEN Wei. 2023. Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block. Northwestern Geology, 56(5): 223-244. doi: 10.12401/j.nwg.2023052
Citation: WANG Peng, BAI Jianke, WANG Yanhe, HAN Hao, SONG Yiwei, ZHOU Lin, ZHANG Jiting, XIAO Ziheng, CHEN Wei. 2023. Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block. Northwestern Geology, 56(5): 223-244. doi: 10.12401/j.nwg.2023052

Petrogenesis and Tectonic Implication of Late−Triassic Granitoids in the West−Central Part of Songpan−Ganze Block

More Information
  • Through various methods such as petrography, zircon U−Pb geochronology, petrogeochemistry and Lu−Hf isotopes, the petrological and geochemical characteristics of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area have been systematically compared, in order to find out its petrogenesis, magma source area and basement attributes. The magmatic zircon U−Pb ages of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area are (212.0±2.2) Ma, (213.3±1.7) Ma, (217.0±1.9) Ma and (215.4±6.4) Ma. Studies on major and trace elements show that the former belongs to high−potassium calcium−alkaline peraluminous I−type granodiorite, while the latter belongs to potash basalt and high−potassium calc−alkaline, peraluminous S−type quartz monzonite and granite. The characteristics of the trace elements of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area are: enrichment of large ion lithophile elements such as Rb, Th, U, depletion of high field strength elements such as Nb and Ta, and slight Zr. Hf negative anomaly, but the former Nb, Ta and other elements are significantly more depleted than the latter. Eu anomaly is also more obvious. The granitic rocks from the south entrace of Bayan Har Mountain area are both light rare earth−enriched rare earth element distribution models, but the content of light and heavy rare earths in the samples from the Dari area are higher than those of the Bayan Har Mountain samples. The zircon Hf isotopic data of granitic rocks from the Bayan Har Mountains area show that εHf(t)=−3.62~2.92, the average is −0.54, and the age of the zircon Hf two−stage model is between 1.07 and 1.48 Ga. Combining previous research data and the composition of major, trace and Hf isotopes in this paper, it is inferred that the source areas of the granitic rocks from the south entrace of Bayan Har Mountain and Dari area are lower crust mafic rocks and middle crust sandstones, respectively. The Songpan−Garze block has a Neoproterozoic basement, and its basement is related to the basement of the Yangtze block. It is speculated that the granitic rocks in the study area are the products of partial melting of different crustal rocks induced by lithospheric delamination under the background of post−collision. The granitic rocks in the study area are the products of partial melting of different crustal rocks induced by lithospheric delamination under the background of post−collision.

  • 加载中
  • [1] 白国典, 王坤, 陈泳霖, 等. 青海卡巴纽尔多地区上三叠统巴颜喀拉山群牙形石的发现及其意义[J]. 西北地质, 2018, 51(4): 24-32 doi: 10.3969/j.issn.1009-6248.2018.04.004

    CrossRef Google Scholar

    BAI Guodian, WANG Kun, CHENG Yonglin. Discovery of the Conodonts in Upper Triassic Bayankalashan Group, Cabanualdo Region, Qinghai Province and Its Significance[J]. Northwestern Geology, 2018, 51(4): 24-32. doi: 10.3969/j.issn.1009-6248.2018.04.004

    CrossRef Google Scholar

    [2] 蔡宏明. 松潘-甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用[D]. 武汉: 中国地质大学, 2010

    Google Scholar

    CAI Hongming. Genesis and deep action of Indosinian granitoids and volcanic rocks in Songpan-Garze fold belt[D]. Wuhan: China University of Geosciences, 2010.

    Google Scholar

    [3] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    Google Scholar

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    Google Scholar

    [4] 沙淑清, 王宗秀, 郭通珍, 等. 巴颜喀拉山东段花岗岩锆石SHRIMP定年及其地球化学特征[J]. 地球学报, 2007, 28(3): 261-269 doi: 10.3321/j.issn:1006-3021.2007.03.004

    CrossRef Google Scholar

    SHA Shuqing, WANG Zongxiu, GUO Tongzhen, et al. Zircon SHRIMP Dating and Geochemical Characteristics of Granites in the Eastern Part of the Bayan Har Mountains[J]. Acta Geoscientica Sinica, 2007, 28(3): 261-269. doi: 10.3321/j.issn:1006-3021.2007.03.004

    CrossRef Google Scholar

    [5] 时章亮, 张宏飞, 蔡宏明. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学-中国地质大学学报, 2009, 34(4): 569-584 doi: 10.3799/dqkx.2009.062

    CrossRef Google Scholar

    SHI Zhangliang, ZHANG Hongfei, CAI Hongming. 2009. Petrogenesis of Strongly Peraluminous Granites in Markan Area, Songpan Fold Belt and Its Tectonic Implication[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(4): 569-584. doi: 10.3799/dqkx.2009.062

    CrossRef Google Scholar

    [6] 王晖, 阮林森, 郭建秋, 等. 四川雅江盆地三叠纪晚期沉积地球化学特征及其大地构造意义[J]. 西北地质, 2012(2): 88-98 doi: 10.3969/j.issn.1009-6248.2012.02.009

    CrossRef Google Scholar

    WANG Hui, RUAN Linsen, GUO Jianqiu. Late Triassic Sedimentary Geochemistry and Tectonic Significance in the Yajiang Basin, Sichuan[J]. Northwestern Geology, 2012(2): 88-98. doi: 10.3969/j.issn.1009-6248.2012.02.009

    CrossRef Google Scholar

    [7] 王辉, 张峰, 王冰洁, 等. 羌塘盆地晚三叠世构造属性与层序地层格架下聚煤特征[J]. 西北地质, 2009, 42(4): 92-101 doi: 10.3969/j.issn.1009-6248.2009.04.011

    CrossRef Google Scholar

    WANG Hui, ZHANG Feng, WANG Bingjie, et al. The Structure Characteristics and Coal-Accumulating Features Under Sequence Framework in the Late Triassic of Qiangtang Basin[J]. Northwestern Geology, 2009, 42(4): 92-101. doi: 10.3969/j.issn.1009-6248.2009.04.011

    CrossRef Google Scholar

    [8] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 398-433 doi: 10.3321/j.issn:1000-0569.2007.02.001

    CrossRef Google Scholar

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic syste Matics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 398-433. doi: 10.3321/j.issn:1000-0569.2007.02.001

    CrossRef Google Scholar

    [9] 夏林圻, 李向民, 马中平, 等. 青藏高原新生代火山作用与构造演化[J]. 西北地质, 2010, 43(01): 1-25 doi: 10.3969/j.issn.1009-6248.2010.01.001

    CrossRef Google Scholar

    XIA Linqi, LI Xiangmin, MA Xueyi, et al. Cenozoic Yolcanism and Tectonic Evolution on the Tibetan Plateau[J]. Northwestern Geology, 2010, 43(01): 1-25. doi: 10.3969/j.issn.1009-6248.2010.01.001

    CrossRef Google Scholar

    [10] 许志琴. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992

    Google Scholar

    XU Zhiqin. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geological Publishing House, 1992.

    Google Scholar

    [11] 于浦生, 李荣社, 计文化, 等. 青藏高原北部成矿带划分[J]. 西北地质, 2007, 40(4): 7-16 doi: 10.3969/j.issn.1009-6248.2007.04.002

    CrossRef Google Scholar

    YU Pusheng, LI Rongshe, JI Wenhua. Division of Metallogenic Belts in the Northern Qinghai-Tibet Plateau[J]. Northwestern Geology, 2007, 40(4): 7-16. doi: 10.3969/j.issn.1009-6248.2007.04.002

    CrossRef Google Scholar

    [12] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos, 2000, 50(1): 51-73.

    Google Scholar

    [13] Beard J S, Lofgren G E. Partial melting of basaltic and andesite greenstones and amphibolites under dehydration and water-saturated conditions at 1, 3 and 6.9 kilobars[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    [14] Blichert T J, Francis A. The Lu-Hf isotope geochemistry of chondrites and the evolution of the Mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1-2): 0-258.

    Google Scholar

    [15] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    [16] Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): provenance and tectonic correlations[J]. Earth and Planetary Science Letters, 1997, 152(1-4): 0-231.

    Google Scholar

    [17] Cai Hongming, Zhang Hongfei, Xu Wangchun, et al. Petrogenesis of Indosinian volcanic rocks in Songpan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Science China Earth Sciences, 2010a, 53(9), 1316-1328. doi: 10.1007/s11430-010-4033-9

    CrossRef Google Scholar

    [18] Cai Hongming, Zhang Hongfei, Xu Wangchun. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze block: Petrogenesis and implication for tectonic evolution[J]. Journal of Earth Science, 2009, 20(4): 681-698. doi: 10.1007/s12583-009-0054-8

    CrossRef Google Scholar

    [19] Chappell B W and White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174.

    Google Scholar

    [20] Chappell B W, Bryant C J and Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153(8): 142-153.

    Google Scholar

    [21] Chappell B W, White A J R. I- and S-type granites in the Lachlan Block[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    [22] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [23] Chen Shefa, Wilson C J L, Worley B A. Tectonic transition from the Songpan-Garze Fold Belt to the Sichuan Basin, south-western China[J]. Basin Research, 1995, 7(3): 235-253. doi: 10.1111/j.1365-2117.1995.tb00108.x

    CrossRef Google Scholar

    [24] Chen Shefa, Wilson C J L. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern Margin of the Tibetan Plateau[J]. Journal of Structural Geology, 1996, 18(4): 413-430.

    Google Scholar

    [25] Chung Sunlin, Chu Meifa, Zhang Yuquan, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional Mag Matism[J]. Earth Science Reviews, 2005, 68(3-4): 173-196.

    Google Scholar

    [26] Chung Sunlin, Liu Dunyi, Ji Jianqing, et al. Adakites from continental collision zone: melting of thickened lower crust in southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1

    CrossRef Google Scholar

    [27] Clemens J D, Stevens G and Farina F. The enig Matic sources of I-type granites: The peritectic connexion[J]. Lithos, 2011, 126(3): 174-181.

    Google Scholar

    [28] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [29] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20, 641-644.

    Google Scholar

    [30] Elena A K, Maurice B, Jacques M. Discovery of the Tethys-Tethys residual peridotites along the Anye Maqen-KunLun suture zone (North Tibet)[J]. Comptes Rendus-Geoscience, 2003, 335, 709−719.

    Google Scholar

    [31] Griffin W L, Wang Xiang, Jackson S E, et al. Zircon chemistry and Mag Ma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

    CrossRef Google Scholar

    [32] Harris N, Inger S. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56. doi: 10.1007/BF00310881

    CrossRef Google Scholar

    [33] Healy B, Collins W J and Richards SW. A hybrid origin for Lachlan S-type granites: The Murrumbidgee batholith example[J]. Lithos, 2004, 78(1): 197-216.

    Google Scholar

    [34] Hoskin P W O, Black L P. Metamorphic zircon for Mation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4): 423-439.

    Google Scholar

    [35] Hou Zengqian, Gao Yongfeng, Qu Xiaoming, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220(1-2): 139-155. doi: 10.1016/S0012-821X(04)00007-X

    CrossRef Google Scholar

    [36] Hsü K J, Pan G T, Sengör A M C. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37(6), 473-508. doi: 10.1080/00206819509465414

    CrossRef Google Scholar

    [37] Huang M H, Buick I S, Hou L W. Tectonometamorphic Evolution of the Eastern Tibet Plateau: Evidence from the Central Songpan-Garze Orogenic Belt, Western China[J]. Journal of Petrology, 2003, 44(2): 255-278. doi: 10.1093/petrology/44.2.255

    CrossRef Google Scholar

    [38] Icenhower J, London D. IExperimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt[J]. American Mineralogist, 1996, 81(5-6): 719-734. doi: 10.2138/am-1996-5-619

    CrossRef Google Scholar

    [39] Ilbeyli N, Pearce J A, Thirlwall M F, et al. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey[J]. Lithos, 2004, 72(3-4): 163-182. doi: 10.1016/j.lithos.2003.10.001

    CrossRef Google Scholar

    [40] Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[J]. Minerals, Rocks and Mountains, 1996.

    Google Scholar

    [41] Jung S, Mezger K, Hoernes S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites - a Major and trace element and Nd-Sr-Pb-O isotope study from the Proterozoic Da Mara Belt, Namibia[J]. Lithos, 1998, 45(1-4): 147-175. doi: 10.1016/S0024-4937(98)00030-9

    CrossRef Google Scholar

    [42] Li Xiaohua, Li Zhengxiang, Li Wuxian, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A Major igneous event in response to foundering of a subducted flat-slab[J]. Lithos, 2007, 96(1-2): 186-204. doi: 10.1016/j.lithos.2006.09.018

    CrossRef Google Scholar

    [43] Liu Yin, Xiao Wenjiao, Windley B F, et al. Late Triassic ridge subduction of Paleotethys: Insights from high-Mg granitoids in the Songpan-Ganzi area of northern Tibet[J]. Lithos, 2019, 334-335: 254-272. doi: 10.1016/j.lithos.2019.03.012

    CrossRef Google Scholar

    [44] Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from Mantle xenoliths[J]. Journal of Petrology, 2010a, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [45] Liu Yongsheng, Hu Zhanchu, Gao Shan, et al. Insituanalysis of Major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [46] Liu Yongsheng, Hu Zhanchu, Zong Keqing, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010b, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [47] Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronlogical Center Special Publication, 2003, 4: 25-32.

    Google Scholar

    [48] Mattauer M, Malavieille J, Calassou S, et al. La chaine triasique de Songpan-Garze (ouest Sechuan et est Tibet): Une chaine de plissement-decollement sur Marge passive. Comptes rendus de l'Académie des sciences[J]. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 1992, 314.6: 619-626.

    Google Scholar

    [49] Middlemost E A K. Naming Materials in the Mag Ma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3-4): 215-224.

    Google Scholar

    [50] Nabelek P I, Bartlett C D. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 1998, 45(1-4): 71-85. doi: 10.1016/S0024-4937(98)00026-7

    CrossRef Google Scholar

    [51] Nakada S, Takahashi M. Regional variation in chemistry of the Miocene intermediate to felsic Mag Mas in the Outer Zone and the Setouch province of Southwest Japan[J]. Mining Geology, 1979, 85(9): 571-582.

    Google Scholar

    [52] Nash W P, Crecraft H R. Partition coefficients for trace elements in silicic Mag Mas[J]. Geochimica Et Cosmochimica Acta, 1985, 49(11): 2309-2322. doi: 10.1016/0016-7037(85)90231-5

    CrossRef Google Scholar

    [53] Nie Shangyou, Yin An, Rowley D B, et al. Exhu Mation of the Dabie Shan Ultra-High-Pressure Rocks and Accumulation of the Songpan-Ganzi Flysch Sequence, Central China[J]. Geology, 1994, 22: 999-1002.

    Google Scholar

    [54] Patiño Douce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36(3): 707-738. doi: 10.1093/petrology/36.3.707

    CrossRef Google Scholar

    [55] Patino-Douce A E P, Harris N. Experimental Constraints on Hi Malayan Anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    CrossRef Google Scholar

    [56] Patino-Douce A E P, McCarthy T C. Melting of Crustal Rocks During Continental Collision and Subduction[J]. Petrology and Structural Geology, 1998b.

    Google Scholar

    [57] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [58] Petford N, Atherton M. Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [59] Qi Liang, Hu Jing and Conard D C. Determination of trace elements in granites by inductively coupled plas Ma Mass spectrometry[J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

    CrossRef Google Scholar

    [60] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust- Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [61] Reid A J, Wilson C J L, Liu S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau[J]. Journal of Structural Geology, 2005, 27(1): 119-137. doi: 10.1016/j.jsg.2004.06.011

    CrossRef Google Scholar

    [62] Richwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247−263.

    Google Scholar

    [63] Roger F, Arnaud N, Gilder S, et al. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet[J]. Tectonics, 2003, 22(4).

    Google Scholar

    [64] Roger F, Malavieille J, Leloup P H, et al. Timing of granite emplacement and cooling in the Songpan-Garze Block (eastern Tibetan Plateau) with tectonic implications[J]. Journal of Asian Earth Sciences, 2004, 22(5): 465-481. doi: 10.1016/S1367-9120(03)00089-0

    CrossRef Google Scholar

    [65] Rudnick R L and Gao Shan. Composition of the continental crust. In: Rudnick R L ( ed. ) . Treatise on Geochemistry[J]. The Crust, 2003, 3: 1-64

    Google Scholar

    [66] Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions[J]. Contributions to Mineralogy and Petrology, 1991, 107(1): 41-59. doi: 10.1007/BF00311184

    CrossRef Google Scholar

    [67] Sengör A M C. Tectonic Subdivisions and Evolution of Asia[J]. Bull. Tech. Univ. Istanbul, 1985, 46: 355-435.

    Google Scholar

    [68] Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic Mag Mas from common basaltic sources[J]. Contributions to Mineralogy & Petrology, 2005, 148(6): 635-661.

    Google Scholar

    [69] Skjerlie K P, Johnston A D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites[J]. Geology, 1992, 20(3): 263. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

    CrossRef Google Scholar

    [70] Sun S S, McDonough W F. Chemical and isotopic syste Matics of oceanic basalts: Implications for Mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [71] Sun Yong, Chen Liang, Feng Tao, et al. A dynamic model of Paleo-Tethyan evolution: evidences from Paleo-Tethyan ophiolite in China. Northwest University, 2002, 32, 1−6.

    Google Scholar

    [72] Sylvester P J, Liegeois J P. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [73] Tepper J H, Nelson B K, Bergantz G W. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of Mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy & Petrology, 1993, 113(3): 333-351.

    Google Scholar

    [74] Turner S, Hawkesworth C, Liu J Q, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364(6432): 50-54. doi: 10.1038/364050a0

    CrossRef Google Scholar

    [75] Wang Xiaofeng, Metcalfe I, Jian Ping, et al. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution[J]. Journal of Asian Earth Sciences, 2000, 18(6): 675-690. doi: 10.1016/S1367-9120(00)00039-0

    CrossRef Google Scholar

    [76] Weislogel A L. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China[J]. Tectonophysics, 2008, 451(1-4): 0-345.

    Google Scholar

    [77] Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [78] Wolf M B, Wyllie P J. The For Mation of Tonalitic Liquids during the Vapor-Absent Partial Melting of Amphibolite at 10 kbar[J]. EOS, 1992, 70: 506-518.

    Google Scholar

    [79] Wu Fuyuan, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis[J]. Lithos, 2003, 66: 241-273. doi: 10.1016/S0024-4937(02)00222-0

    CrossRef Google Scholar

    [80] Wu Fuyuan, Lin Jingqian, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 0-119.

    Google Scholar

    [81] Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-type granites in Northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9

    CrossRef Google Scholar

    [82] Xiao Long, Zhang Hongfei, Clemens J D, et al. Late Triassic granitoids of the eastern Margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 2007, 96(3-4): 436-452. doi: 10.1016/j.lithos.2006.11.011

    CrossRef Google Scholar

    [83] Yin An, Harrison T M. Geologic Evolution of the Hi Malayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [84] Yin An, Nie Shangyou. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813. doi: 10.1029/93TC00313

    CrossRef Google Scholar

    [85] Yuan Chao, Zhou Meifu, Sun Min, et al. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China: Mag Matic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 2010, 290(3-4): 0-492.

    Google Scholar

    [86] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plas Ma- Mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [87] Zhang Hongfei, Parrish R, Zhang Li, et al. A-type granite and adakitic Mag Matism association in Songpan–Garze block, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 2007, 97(3-4): 323-335. doi: 10.1016/j.lithos.2007.01.002

    CrossRef Google Scholar

    [88] Zhang Hongfei, Zhang Li, Harris N, et al. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Block, Eastern Tibetan Plateau: Constraints on Petrogenesis, Nature of Basement and Tectonic Evolution[J]. Contributions to Mineralogy and Petrology, 2006, 152: 75-88. doi: 10.1007/s00410-006-0095-2

    CrossRef Google Scholar

    [89] Zhang Liyun, Ding Lin, Pullen A, et al. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean[J]. Lithos, 2014, 190-191: 328-348. doi: 10.1016/j.lithos.2013.12.019

    CrossRef Google Scholar

    [90] Zheng Yongfei, Zhang Shaobing, Zhao Zifu, et al. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust[J]. Lithos, 2007, 96: 127-150. doi: 10.1016/j.lithos.2006.10.003

    CrossRef Google Scholar

    [91] Zhong Hong, Zhu Weiguang, Hu Ruizhong, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust[J]. Lithos, 2009, 110: 109-128. doi: 10.1016/j.lithos.2008.12.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(877) PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint