2023 Vol. 42, No. 2-3
Article Contents

LIU Yuchen, XU Dongtao, WANG Xinqiang, LIU Jingao. 2023. The genesis of glaucony in the lower Ediacaran Doushantuo Formation, southern Shaanxi: implication to seawater redox condition. Geological Bulletin of China, 42(2-3): 363-375. doi: 10.12097/j.issn.1671-2552.2023.2-3.014
Citation: LIU Yuchen, XU Dongtao, WANG Xinqiang, LIU Jingao. 2023. The genesis of glaucony in the lower Ediacaran Doushantuo Formation, southern Shaanxi: implication to seawater redox condition. Geological Bulletin of China, 42(2-3): 363-375. doi: 10.12097/j.issn.1671-2552.2023.2-3.014

The genesis of glaucony in the lower Ediacaran Doushantuo Formation, southern Shaanxi: implication to seawater redox condition

More Information
  • Glaucony is an important authigenic mineral in marine environment and has been widely used in palaeoenvironmental research.In this study, we report the occurrence of the glaucony in the lower Ediacaran Doushantuo Formation in southern Shaanxi Province for the first time.Integrated studies including petrography, in-situ microanalysis and X-ray diffraction(XRD)are carried out to constrain the diagenesis of the glaucony and the oceanic redox condition in the early Ediacaran of this area.Microscopic observations using polarizing microscope and scanning electron microscope(SEM)show that the glaucony mainly fills the pores of quartz, feldspar and other clastic minerals in the form of colloidal precipitates, suggesting authigenic precipitation during the early diagenesis.Since both Fe(Ⅱ)and Fe(Ⅲ)are simultaneously required for glauconitization, glaucony prefers to precipitate around the Fe redoxcline(suboxic conditions).Accordingly, the occurrence of glaucony in the lower Doushantuo Formation of study section implies suboxic pore water environments.The results of energy dispersive spectroscopy(EDS)show that the glaucony is characterized by high K2O and Al2O3 but low Fe2O3 contents which are typical of Precambrian glaucony.The dissolution of detrital minerals along with ion exchange between the seawater and pore-water supplied the elements required for glaucony formation.Compared with contemporaneous glaucony-bearing strata in Weng'an area, Guizhou, the limited vertical distribution of glaucony in the study area indicates that the marine redox condition and paleogeography may have played a joint role in regulating the formation and spread of glaucony.

  • 加载中
  • [1] Algabri M, She Z B, Jiao L X, et al. Apatite-glaucony association in the Ediacaran Doushantuo Formation, South China and implications for marine redox conditions[J]. Precambrian Research, 2020, 347: 105842. doi: 10.1016/j.precamres.2020.105842

    CrossRef Google Scholar

    [2] Algeo T J, Liu J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 2020, 540: 119549. doi: 10.1016/j.chemgeo.2020.119549

    CrossRef Google Scholar

    [3] Amorosi A. Glaucony and Sequence Stratigraphy: A Conceptual Framework of Distribution in Siliciclastic Sequences[J]. Journal of Sedimentary Research, 1995, 65(4b): 419-425.

    Google Scholar

    [4] Amorosi A. Detecting Compositional, Spatial, and Temporal Attributes of Glaucony: A Tool for Provenance Research[J]. Sedimentary Geology, 1997, 109(1/2): 135-153.

    Google Scholar

    [5] An Z H, Jiang G Q, Tong J N, et al. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo delta C-13 anomaly in the Yangtze Gorges area, South China[J]. Precambrian Research, 2015, 271: 243-253. doi: 10.1016/j.precamres.2015.10.007

    CrossRef Google Scholar

    [6] Bailey S W. Summary of Recommendation of AIPEA Nomenclature Committee on Clay Minerals[J]. American Mineralogist, 1980, 65: 1-7.

    Google Scholar

    [7] Banerjee S, Jeevankumar S, Eriksson P G. Mg-Rich Ferric Illite in Marine Transgressive and Highstand Systems Tracts: Examples from the Paleoproterozoic Semri Group, Central India[J]. Precambrian Research, 2008, 162(1/2): 212-226.

    Google Scholar

    [8] Banerjee S, Chattoraj S L, Saraswati P K, et al. Substrate Control on Formation and Maturation of Glauconites in the Middle Eocene Harudi Formation, Western Kutch, India[J]. Marine and Petroleum Geology, 2012a, 30(1): 144-160. doi: 10.1016/j.marpetgeo.2011.10.008

    CrossRef Google Scholar

    [9] Banerjee S, Chattoraj S L, Saraswati P K, et al. The Origin and Maturation of Lagoonal Glauconites: A Case Study from the Oligocene Maniyara Fort Formation, Western Kutch, India[J]. Geological Journal, 2012b, 269(8): 259-269.

    Google Scholar

    [10] Banerjee S, Mondal S, Chakraborty P P, et al. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh basin, India[J]. Precambrian Research, 2015, 271: 33-48. doi: 10.1016/j.precamres.2015.09.026

    CrossRef Google Scholar

    [11] Banerjee S, Bansal U, Thorat A V. A review on palaeogeographic implications and temporal variation in glaucony composition[J]. Journal of Palaeogeography, 2016, 5(1): 43-71. doi: 10.1016/j.jop.2015.12.001

    CrossRef Google Scholar

    [12] Bansal U, Banerjee S, Nagendra R. Is the rarity of glauconite in Precambrian Bhima Basin in India related to its chloritization?[J]. Precambrian Research, 2020, 336: 105509. doi: 10.1016/j.precamres.2019.105509

    CrossRef Google Scholar

    [13] Bristow T F, Kennedy M J, Derkowski A, et al. Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences, 2009, 106(32): 13190-13195. doi: 10.1073/pnas.0901080106

    CrossRef Google Scholar

    [14] Burst J F, Houston T. "Glauconite" pellets Their mineral nature and applications to stratigraphic interpretations[J]. Bulletin of the American Association of Petroleum Geologist, 1958, 42(2): 310-327.

    Google Scholar

    [15] Condon D, Zhu M Y, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308(5718): 95-98. doi: 10.1126/science.1107765

    CrossRef Google Scholar

    [16] Dasgupta S, Chaudhuri A K, Fukuoka M. Compositional Characteristics of Glauconitic Alterations of K-Feldspar from India and Their Implications[J]. Journal of Sedimentary Research, 1990, 60: 277-281.

    Google Scholar

    [17] Deb S P, Fukuoka M. Fe-Illites in a Proterozoic Deep Marine Slope Deposit in the Penganga Group of the Pranhita Godavari Valley: Their Origin and Environmental Significance[J]. Journal of Geology, 1998, 106(6): 741-749. doi: 10.1086/516057

    CrossRef Google Scholar

    [18] Drits V A, Ivanovskaya T A, Sakharov B A, et al. Nature of the Structural and Crystal-Chemical Heterogeneity of the Mg-Rich Glauconite(Riphean, Anabar Uplift)[J]. Lithology and Mineral Resources, 2010, 45(6): 555-576. doi: 10.1134/S0024490210060040

    CrossRef Google Scholar

    [19] Fischer H. Glauconite formation: discussion of the terms authigenic, perigenic, allogenic and meta-allogenic[J]. Eclogae Geologicae Helvetiae, 1990, 83(1): 1-6.

    Google Scholar

    [20] Guimaraes E M, Velde B, Hillier S, et al. Diagenetic/Anchimetamorphic Changes on the Proterozoic Glauconite and Glaucony From the Paranoá Group, Mid-Western Brazil[J]. Revista Brasileira de Geociências, 2000, 30(3): 363-366. doi: 10.25249/0375-7536.2000303363366

    CrossRef Google Scholar

    [21] Harris L C, Whiting B M. Sequence-stratigraphic significance of Miocene to Pliocene glauconite-rich layers, on- and offshore of the US Mid-Atlantic margin[J]. Sedimentary Geology, 2000, 134(1): 129-147.

    Google Scholar

    [22] Hillier S, Velde B. Chlorite Interstratified with a 7-a Mineral - an Example from Offshore Norway and Possible Implications for the Interpretation of the Composition of Diagenetic Chlorites[J]. Clay Minerals, 1992, 27(4): 475-486. doi: 10.1180/claymin.1992.027.4.07

    CrossRef Google Scholar

    [23] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346. doi: 10.1126/science.281.5381.1342

    CrossRef Google Scholar

    [24] Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983. doi: 10.1126/sciadv.1600983

    CrossRef Google Scholar

    [25] Ivanovskaya T A, Gor'kova N V, Karpova G V, et al. Phyllosilicates(Glauconite, Illite, and Chlorite)in Terrigenous Sediments of the Arymas Formation(Olenek High)[J]. Lithology and Mineral Resources, 2006, 41(6): 547-569. doi: 10.1134/S0024490206060046

    CrossRef Google Scholar

    [26] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551Ma)in South China[J]. Gondwana Research, 2011, 19(4): 831-849. doi: 10.1016/j.gr.2011.01.006

    CrossRef Google Scholar

    [27] Jones B, Manning D A C. Comparison of geochemical indexes used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.

    Google Scholar

    [28] Kitamura A. Glaucony and carbonate grains as indicators of the condensed section: Omma Formation, Japan[J]. Sedimentary Geology, 1998, 122(1/4): 151-163.

    Google Scholar

    [29] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369

    CrossRef Google Scholar

    [30] Li C, Cheng M, Zhu M Y, et al. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution[J]. Emerging Topics in Life Sciences, 2018, 2(2): 279-288. doi: 10.1042/ETLS20170157

    CrossRef Google Scholar

    [31] Mei M X, Yang F J, Gao J H, et al. Glauconites Formed in the High-energy Shallow-Marine Environment of the Late Mesoproterozoic: Case Study from Tieling Formation at Jixian Section in Tianjin, North China[J]. Earth Science Frontiers, 2008, 15(4): 146-158. doi: 10.1016/S1872-5791(08)60048-2

    CrossRef Google Scholar

    [32] Meunier A, Albani A E. The glauconite-Fe-illite-Fe-smectite problem: a critical review[J]. Terra Nova, 2007, 19(2): 95-104. doi: 10.1111/j.1365-3121.2006.00719.x

    CrossRef Google Scholar

    [33] Murav'yev V I, Daynyak L G, Golovin B. Changes in the Composition of Glauconite in Contact with Sea Water[J]. International Geology Review, 1985, 27(7): 850-858. doi: 10.1080/00206818509466471

    CrossRef Google Scholar

    [34] Odin G S, Matter A. De glauconiarum origine[J]. Sedimentology, 1981, 28: 611-641. doi: 10.1111/j.1365-3091.1981.tb01925.x

    CrossRef Google Scholar

    [35] Odin G S, Fullagar P D. Chapter C4 Geological Significance of the Glaucony Facies[J]. Developments in Sedimentology, 1988, 45: 295-332. doi: 10.1016/S0070-4571(08)70069-4

    CrossRef Google Scholar

    [36] Planavsky N J, Rouxel O J, Bekker A, et al. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467(7319): 1088-1090. doi: 10.1038/nature09485

    CrossRef Google Scholar

    [37] Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489: 546-549. doi: 10.1038/nature11445

    CrossRef Google Scholar

    [38] Sahoo S K, Planavsky N J, Jiang G Q, et al. Oceanic oxygenation events in the anoxic Ediacaran ocean[J]. Geobiology, 2016, 14(5): 457-468. doi: 10.1111/gbi.12182

    CrossRef Google Scholar

    [39] Sarkar S, Choudhuri A, Banerjee S, et al. Seismic and Non-Seismic Soft-Sediment Deformation Structures in the Proterozoic Bhander Limestone, Central India[J]. Geologos, 2014, 20(2): 89-103. doi: 10.2478/logos-2014-0008

    CrossRef Google Scholar

    [40] Tang D J, Shi X Y, Ma J B, et al. Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: An example from the Mesoproterozoic Tieling Formation in North China[J]. Precambrian Research, 2017a, 294: 214-229. doi: 10.1016/j.precamres.2017.03.026

    CrossRef Google Scholar

    [41] Tang D J, Shi X Y, Jiang G Q, et al. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China[J]. American Mineralogist, 2017b, 102(11): 2317-2332. doi: 10.2138/am-2017-6136

    CrossRef Google Scholar

    [42] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.

    Google Scholar

    [43] Xiao D, Cao J, Luo B, et al. Neoproterozoic postglacial paleoenvironment and hydrocarbon potential: A review and new insights from the Doushantuo Formation Sichuan Basin, China[J]. Earth-Science Reviews, 2021, 212: 103453. doi: 10.1016/j.earscirev.2020.103453

    CrossRef Google Scholar

    [44] Xiao W Y, Cao J, Luo B, et al. Marinoan glacial aftermath in South China: Paleo-environmental evolution and organic carbon accumulation in the Doushantuo shales[J]. Chemical Geology, 2020, 555: 119838. doi: 10.1016/j.chemgeo.2020.119838

    CrossRef Google Scholar

    [45] Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations[J]. Geology, 2005, 33(6): 473-476. doi: 10.1130/G21418.1

    CrossRef Google Scholar

    [46] Zhang Y, Zhang X L. New Megasphaera-like microfossils reveal their reproductive strategies[J]. Precambrian Research, 2017, 300: 141-150. doi: 10.1016/j.precamres.2017.08.006

    CrossRef Google Scholar

    [47] Zhou C M, Huyskens M H, Lang X G, et al. Calibrating the terminations of Cryogenian global glaciations[J]. Geology, 2019, 47(3): 251-254. doi: 10.1130/G45719.1

    CrossRef Google Scholar

    [48] 程锦翔, 邓敏, 王正和, 等. 康滇古陆西侧早志留世古海洋氧化-还原环境及优质烃源岩发育模式——以盐源地区CYD2井为例[J]. 地质通报, 2022, 41(10): 1813-1828.

    Google Scholar

    [49] 李智武, 冉波, 肖斌, 等. 四川盆地北缘震旦纪—早寒武世隆-坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85.

    Google Scholar

    [50] 陕西省地质矿产局. 陕西省区域地质志[M]. 北京: 地质出版社, 1989.

    Google Scholar

    [51] 汤冬杰, 史晓颖, 马坚白, 等. 中元古代海绿石: 前寒武纪海洋浅化变层深度的潜在指示矿物[J]. 地学前缘, 2016, 23(6): 219-235.

    Google Scholar

    [52] 汪泽成, 刘静江, 姜华, 等. 中—上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义[J]. 石油勘探与开发, 2019, 46(1): 39-51.

    Google Scholar

    [53] 张琴, 梅啸寒, 谢寅符, 等. 不同类型海绿石的发育特征及分类体系探讨[J]. 石油与天然气地质, 2016, 37(6): 952-963.

    Google Scholar

    [54] 赵全基, 彭汉昌, 张壮域. 中国陆架海绿石分布特征及其意义[J]. 海洋科学, 1992, 16(5): 41-44.

    Google Scholar

    [55] 周传明, 袁训来, 肖书海, 等. 中国埃迪卡拉纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 7-25.

    Google Scholar

    [56] 周晓峰, 杨风丽, 杨瑞青, 等. 扬子克拉通埃迪卡拉系陡山沱组构造-岩相古地理恢复及油气意义[J]. 古地理学报, 2020, 22(4): 647-662.

    Google Scholar

    [57] 周锡强, 李楠, 梁光胜, 等. 天津蓟县中元古界铁岭组叠层石灰岩中原地海绿石的沉积学意义[J]. 地质通报, 2009, 28(7): 985-990.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2101) PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint