2023 Vol. 42, No. 2-3
Article Contents

ZHANG Ke, JIAO Jiangang, LIU Qi, MA Yijia, DUAN Jun, ZHAO Liandang, JIA Li, LIU Jian. 2023. Uplift of Paleozoic magmatic core complex in the Longshoushan area, Gansu: evidence from geochronology and geochemistry of rock veins in the Jinchuan deposit area. Geological Bulletin of China, 42(2-3): 343-362. doi: 10.12097/j.issn.1671-2552.2023.2-3.013
Citation: ZHANG Ke, JIAO Jiangang, LIU Qi, MA Yijia, DUAN Jun, ZHAO Liandang, JIA Li, LIU Jian. 2023. Uplift of Paleozoic magmatic core complex in the Longshoushan area, Gansu: evidence from geochronology and geochemistry of rock veins in the Jinchuan deposit area. Geological Bulletin of China, 42(2-3): 343-362. doi: 10.12097/j.issn.1671-2552.2023.2-3.013

Uplift of Paleozoic magmatic core complex in the Longshoushan area, Gansu: evidence from geochronology and geochemistry of rock veins in the Jinchuan deposit area

More Information
  • The Neoproterozoic Jinchuan Cu-Ni sulfide deposit is located in the central Longshoushan, southwestern margin of the North China Craton.Due to the tectonic compression and metamorphic hydrothermal superposition in the process of the Paleozoic orogeny, Cu-Pt-rich ores were enriched again.A large number of mafic-felsic rock veins and batholiths crop out in the Jinchuan deposit and its vicinity, which indicates existence of uplift of Paleozoic magmatic core complex in the Longshoushan area.This comprehensive study focuses on dolerite, lamprophyre, and granite porphyry veins crosscutting ore-bearing intrusions of the Jinchuan deposit area.Zircon U-Pb dating indicates that granite porphyry and lamprophyre formed at 367.1±2.0 Ma and 400.6~425.3 Ma, whereas the dolerite formed at 423.5±1.4 Ma based on previous work, preliminarily suggesting the Paleozoic formation ages for various types of rock veins in the deposit area.Petrochemical and isotope geochemical results show the dolerite and lamprophyre have εNd(t)values ranging from -4.59 to -1.58 and -2.97 to -2.03, with corresponding (87Sr/86Sr)i values of 0.7056 to 0.7077 and 0.7083 to 0.7085, respectively, indicating that the magma sources of these mafic rock veins were derived from an enriched lithospheric mantle.The granite porphyry has zircon εHf(t)values of 5.11 to 12.84, suggesting it was sourced from partial melting of the juvenile crust.Combined with previous studies on regional Paleozoic magmatic activities, the authors put forward an integrated tectonic-magmatic evolution model.

  • 加载中
  • [1] Bienvenu P, Bougault H, Joron J L, et al. MORB alteration: rare-earth element/non-rare-earth hygromagmaphile element fractionation[J]. Chemical Geology, 1990, 82: 1-14. doi: 10.1016/0009-2541(90)90070-N

    CrossRef Google Scholar

    [2] Bouvier A, Vervoort J D, Patchett J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of the terrestrial planets[J]. Earth and Planetary Science Letters, 2008, 280: 285-295.

    Google Scholar

    [3] Chai G, Naldrett A J. The Jinchuan ultramafic intrusion: Cumulate of a High-Mg basaltic magma[J]. Journal of Petrology, 1992, (2): 277-303.

    Google Scholar

    [4] DePaolo D J, Wasserburg G J. Nd isotopic variations and petrogenetic models[J]. Geophysical Research Letters, 1976, 3(5): 249-252. doi: 10.1029/GL003i005p00249

    CrossRef Google Scholar

    [5] Duan J, Li C S, Qian Z Z, et al. Geochronological and geochemical constraints on the petrogenesis and tectonic significance of paleozoic dolerite dykes in the southern margin of Alxa Block, North China Craton[J]. Journal of Asian Earth Sciences, 2015, 111(1): 244-253.

    Google Scholar

    [6] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [7] Jiao J G, Han F, Zhao L D, et al. Magnetite geochemistry of the Jinchuan Ni-Cu-PGE deposit, NW China: Implication for its Ore-Forming processes[J]. Minerals, 2019, 9(10): 593. doi: 10.3390/min9100593

    CrossRef Google Scholar

    [8] Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon[C]//Zircon, 2003, 53(1): 327-341.

    Google Scholar

    [9] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of igneous rocks and glossary of terms[M]. Oxford: Black Well Scientific Publications, 1989.

    Google Scholar

    [10] Li C F, Chu Z Y, Guo J H, et al. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7(11): 4793-4802. doi: 10.1039/C4AY02896A

    CrossRef Google Scholar

    [11] Li C F, Wang X C, Guo J H, et al. Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(5): 1150-1159. doi: 10.1039/C5JA00477B

    CrossRef Google Scholar

    [12] Liu Y. Continental and oceanic crust recycling-induced Melt-Peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J. Petrol., 2010, 51(1/2): 537-571.

    Google Scholar

    [13] Ma Y F, Liu Y J, Peskov A Y, et al. Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China[J]. China Geology, 2022, 5(4): 555-578.

    Google Scholar

    [14] Middlemost E. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [15] Rock N M S. The nature and origin of lamprophyres: an overview[J]. Geological Society, London, Special Publications, 1987, 30(1): 191-226. doi: 10.1144/GSL.SP.1987.030.01.09

    CrossRef Google Scholar

    [16] Saunders A D, Norry M J, Tarney J. Fluid influence on the trace element compositions of subduction zone magmas[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1991, 335(1638): 377-392.

    Google Scholar

    [17] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5536): 1766. doi: 10.1126/science.293.5536.1766

    CrossRef Google Scholar

    [18] Song S, Zhang L, Niu Y, et al. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan plateau based on geochemical and geochronological data[J]. Journal of Petrology, 2006, 47(3): 435-455. doi: 10.1093/petrology/egi080

    CrossRef Google Scholar

    [19] Sun S S, Mcdonough. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [20] Tung K A, Yang H Y, Liu D Y, et al. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Science Bulletin, 2007, 52(10): 12.

    Google Scholar

    [21] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346.

    Google Scholar

    [22] Yang G, Du A, Lu R, et al. Re-Os(ICP-MS)dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit[J]. Science in China(Series D: Earth Sciences), 2005, 48(10): 106-111.

    Google Scholar

    [23] Yang S H, Yang G, Qu W J, et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China[J]. Mineralium Deposita, 2018, 53(6): 757-774. doi: 10.1007/s00126-017-0775-z

    CrossRef Google Scholar

    [24] Zeng R Y, Lai J Q, Mao X C, et al. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication[J]. Journal of Asian Earth Sciences, 2016, 121(May1): 20-33.

    Google Scholar

    [25] Zeng RY, Lai J Q, Mao X C, et al. Petrogenesis and tectonic significance of the Early Devonian lamprophyres and diorites in the Alxa Block, NW China[J]. Chemie der Erde - Geochemistry, 2020, 81(1): 1-21.

    Google Scholar

    [26] Zhang M, Kamo S L, Li C, et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, Western China[J]. Mineralium Deposita, 2010, 45(1): 3-9. doi: 10.1007/s00126-009-0259-x

    CrossRef Google Scholar

    [27] Zindler A, Hart S R. Chemical geodynamics[C]//Workshop on the Earth As A Planet, 1986.

    Google Scholar

    [28] 陈建林, 郭原生, 付善明. 花岗岩研究进展——ISMA花岗岩类分类综述[J]. 甘肃地质学报, 2004, 13(1): 67-73.

    Google Scholar

    [29] 段俊, 钱壮志, 焦建刚, 等. 甘肃龙首山岩带西井镁铁质岩体成因及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(3): 832-846. doi: 10.13278/j.cnki.jjuese.201503115

    CrossRef Google Scholar

    [30] 宫江华, 张建新, 于胜尧. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属——来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志, 2011, 30(5): 795-818. doi: 10.3969/j.issn.1000-6524.2011.05.005

    CrossRef Google Scholar

    [31] 焦建刚, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床的岩浆质量平衡与成矿过程[J]. 矿床地质, 2012, 31(6): 1135-1148. doi: 10.3969/j.issn.0258-7106.2012.06.001

    CrossRef Google Scholar

    [32] 焦建刚, 高栋, 张国鹏, 等. 甘肃永昌北海子镁铁—超镁铁质岩体岩石学、地球化学及年代学研究[J]. 地学前缘, 2017, 24(2): 130-139.

    Google Scholar

    [33] 李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 49(4): 401-402. doi: 10.3321/j.issn:0023-074X.2004.04.018

    CrossRef Google Scholar

    [34] 李献华, 苏犁, 李正祥. 金川超镁铁岩体形成时代的SHRIMP斜锆石定年[C]//第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会, 2005: 133.

    Google Scholar

    [35] 李永军, 李甘雨, 佟丽莉, 等. 玄武岩类形成的大地构造环境Ta, Hf, Th, La, Zr, Nb比值对比判别[J]. 地球科学与环境学报, 2015, 37(3): 14-21.

    Google Scholar

    [36] 刘秉翔, 张招崇, 程志国. 煌斑岩的分类、特征及成因[J]. 地质学报, 2021, 95(2): 292-316.

    Google Scholar

    [37] 刘健, 于强, 王猛, 等. 金川铜镍硫化物矿床晚中生代以来抬升冷却事件的磷灰石裂变径迹约束[J/OL]. 大地构造与成矿学, 2022: 1-15.

    Google Scholar

    [38] 吕古贤, 李洪奎, 丁正江, 等. 胶东地区"岩浆核杂岩"隆起-拆离带岩浆期后热液蚀变成矿[J]. 现代地质, 2016, 30(2): 247-262.

    Google Scholar

    [39] 宋晨, 苏尚国, 伍月, 等. 甘肃金川铜镍(铂)硫化物矿床中高镁辉绿岩脉的发现及其意义[J]. 岩石学报, 2014, 30(11): 3375-3382.

    Google Scholar

    [40] 汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 4(4): 55-64.

    Google Scholar

    [41] 汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995.

    Google Scholar

    [42] 汤中立, 白云来. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 1999, 6(2): 78-90.

    Google Scholar

    [43] 汤中立. 中国的小岩体岩浆矿床[J]. 中国工程科学, 2002, 4(6): 9-12.

    Google Scholar

    [44] 汤中立, 闫海卿, 焦建刚, 等. 中国岩浆硫化物矿床新分类与小岩体成矿作用[J]. 矿床地质, 2006, 25(1): 1-9.

    Google Scholar

    [45] 王强. 龙首山群白家嘴子组变质作用研究[D]. 长安大学硕士学位论文, 2014.

    Google Scholar

    [46] 魏俏巧, 郝立波, 陆继龙, 等. 甘肃河西堡花岗岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义[J]. 矿物岩石地球化学通报, 2013, 32(6): 729-735.

    Google Scholar

    [47] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

    Google Scholar

    [48] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.

    Google Scholar

    [49] 曾南石, 汪劲草, 罗先熔, 等. 金川地区构造序列及与铜镍硫化物矿床的关系[J]. 地学前缘, 2013, 20(6): 210-218.

    Google Scholar

    [50] 曾认宇, 赖健清, 毛先成, 等. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 2013, 23(9): 2574-2583.

    Google Scholar

    [51] 曾认宇, 赖健清, 毛先成, 等. 甘肃龙首山地区构造-岩浆事件及其地质意义[M]. 北京: 地质出版社, 2022: 57-94.

    Google Scholar

    [52] 张冬冬, 高阳, 刘军, 等. 黑龙江漠河地区早古生代早期花岗岩的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1926-1945.

    Google Scholar

    [53] 张丽琪. 北祁连—阿拉善地块南缘古生代碰撞后岩浆作用及深部过程[D]. 中国地质大学(武汉)博士学位论文, 2019.

    Google Scholar

    [54] 张晓旭, 苏尚国, 刘美玉, 等. 甘肃金川早古生代正长花岗岩锆石SHRIMP U-Pb年代学, 岩石学, 地球化学特征及其构造意义[J]. 地学前缘, 2021, 28(4): 283-298.

    Google Scholar

    [55] 周立发. 阿拉善地块南缘早古生代大地构造特征和演化[J]. 西北大学学报(自然科学版), 1992, (1): 107-115.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(6062) PDF downloads(117) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint