2023 Vol. 42, No. 12
Article Contents

HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. 2023. Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence. Geological Bulletin of China, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007
Citation: HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. 2023. Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence. Geological Bulletin of China, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007

Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence

More Information
  • In this paper, the geochronology, geochemistry and Hf isotopic composition of the Harasu porphyritic syenogranite in Zalantun, Inner Mongolia were studied.LA-ICP-MS zircon dating indicates that the Harasu porphyritic syenogranite was emplaced during the Late Triassic(213.17±0.93 Ma).The mineral assemblage is mainly composed of quartz, alkaline feldspar and plagioclase.The Harasu porphyritic syenogranite is characterized by high SiO2(72.56%~74.36%), K2O(4.74%~5.49%), low MgO(0.12%~0.34%), CaO(0.54%~0.95%), TiO2(0.19%~0.29%) and P2O5(0.042%~0.053%), A/CNK=1~1.05, < 1.1.It is strongly depleted in Ba, Sr, Eu, P and Ti, showing the geochemical characteristics of aluminous A-type granite.The Harassu A-type granites have high εHf(t) values(+9.08~+15.3), which may due to the partial melting of new meso-basic crustal materials.The Harasu A-type granite is recognized as the product of a post-orogenic tectonic.The crust in Zalantun area was thickened and transformed into a post orogenic extension mechanism, which may be affected by the remote effect of the closure of the Paleo-Asian Ocean, and then the Late Triassic Harasu porphyritic syenogranite in Zalantun area was formed.

  • 加载中
  • [1] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55.

    Google Scholar

    [2] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [3] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29.

    Google Scholar

    [4] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [5] Dall'Agnol R, de Oliveira D C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 2007, 93(3): 215-233.

    Google Scholar

    [6] Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134.

    Google Scholar

    [7] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [8] Frost C D, Frost B R. Reduced rapakivi-type granites, the tholeiite connection[J]. Geology(Boulder), 1997, 25(7): 647-650.

    Google Scholar

    [9] Frost C D, Frost B R. On Ferroan(A-type)granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1): 39-53. doi: 10.1093/petrology/egq070

    CrossRef Google Scholar

    [10] Hildreth W, Halliday A N, Christiansen R L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field[J]. Journal of Petrology, 1991, 32(1): 63-138. doi: 10.1093/petrology/32.1.63

    CrossRef Google Scholar

    [11] Kemp A I S, Wormald R J, Whitehouse M J, et al. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia[J]. Geology(Boulder), 2005, 33(10): 797-800.

    Google Scholar

    [12] Landenberger B, Collins W J. Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia[J]. Journal of Petrology, 1996, 37(1): 145-170. doi: 10.1093/petrology/37.1.145

    CrossRef Google Scholar

    [13] Liu Y J, Li W M, Feng Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian orogenic belt[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [14] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [15] Ludwig K R. User's Manual for Isoplot/EX Version 3.00: A geochoronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003: 1-70.

    Google Scholar

    [16] Li G Y, Zhou J B, Li L. A new tectonic framework for the composite orogenic metallogenic systems in the east of North China: The role of the Heilongjiang Ocean in the Late Paleozoic to Mesozoic[J]. Ore Geology Reviews, 2021, 136: 104293. doi: 10.1016/j.oregeorev.2021.104293

    CrossRef Google Scholar

    [17] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [18] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 348-370

    Google Scholar

    [19] Mushkin A, Navon O, Halicz L, et al. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. doi: 10.1093/petrology/44.5.815

    CrossRef Google Scholar

    [20] Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology(Boulder), 1997, 25(8): 743-746.

    Google Scholar

    [21] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [22] Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1): 123-138.

    Google Scholar

    [23] Sun W D, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [24] Tong Y, Jahn B M, Wang T, et al. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance[J]. Journal of Asian Earth Sciences, 2015, 97: 320-336. doi: 10.1016/j.jseaes.2014.10.011

    CrossRef Google Scholar

    [25] Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [26] Whalen J B, Currie K L, Chappel B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [27] Whitaker M L, Whitaker M L, Nekvasil H, et al. Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation[J]. Bulletin of Volcanology, 2008, 70(3): 417-434. doi: 10.1007/s00445-007-0146-1

    CrossRef Google Scholar

    [28] Wu F, Jahn B, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1): 89-113.

    Google Scholar

    [29] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015

    CrossRef Google Scholar

    [30] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106.

    Google Scholar

    [31] Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 249(3/4): 262-281.

    Google Scholar

    [32] Zhang X H, Yuan L L, Xue F H, et al. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton-orogen boundary[J]. Lithos, 2012, 144/145: 12-23. doi: 10.1016/j.lithos.2012.03.022

    CrossRef Google Scholar

    [33] Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1): 311-327. doi: 10.1016/j.gr.2014.02.011

    CrossRef Google Scholar

    [34] 陈彦, 张志诚, 李可, 等. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义[J]. 北京大学学报(自然科学版), 2014, 50(5): 843-858.

    Google Scholar

    [35] 崔玉荣, 涂家润, 李国占, 等. LA-ICP-MS榍石U-Pb定年方法[J]. 华北地质, 2022, 45(4): 53-59.

    Google Scholar

    [36] 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004

    CrossRef Google Scholar

    [37] 洪大卫, 王式, 谢锡林, 等. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, 77(2): 441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012

    CrossRef Google Scholar

    [38] 洪大卫, 王式洸, 谢锡林, 等. 从中亚正ε(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系[J]. 地质学报, 2003, (2): 203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008

    CrossRef Google Scholar

    [39] 华北, 高雪, 胡兆国, 等. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束[J]. 岩石学报, 2020, 36(5): 1426-1444.

    Google Scholar

    [40] 黄波, 付冬, 李树才, 等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 2016, 32(1): 158-176.

    Google Scholar

    [41] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    CrossRef Google Scholar

    [42] 雷豪, 张贵宾, 徐备. 兴蒙造山带晚古生代伸展减薄过程: 来自内蒙林西地区岩体的地球化学证据[J]. 岩石学报, 2022, 47(19): 3354-3370.

    Google Scholar

    [43] 李冬雪, 郑常青, 梁琛岳, 等. 大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义[J]. 地球科学, 2022, 47(9): 3354-3370.

    Google Scholar

    [44] 李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128.

    Google Scholar

    [45] 刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011

    CrossRef Google Scholar

    [46] 刘文斌, 杨延伟, 刘翔, 等. 内蒙古扎兰屯地区印支期二长花岗岩构造演化: 来自地球化学特征和锆石U-Pb年龄的制约[J]. 地质通报, 2021, 40(5): 698-706.

    Google Scholar

    [47] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23.

    Google Scholar

    [48] 钱程, 陆露, 秦涛, 等. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳-兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 2018, 92(11): 2190-2214. doi: 10.3969/j.issn.0001-5717.2018.11.002

    CrossRef Google Scholar

    [49] 施光海, 苗来成, 张福勤, 等. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J]. 科学通报, 2004, 49(4): 384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015

    CrossRef Google Scholar

    [50] 石文杰, 赵旭, 魏俊浩, 等. 兴蒙造山带南段白音图嘎地区A型花岗岩地球化学特征及其对古亚洲洋演化的制约[J]. 大地构造与成矿学, 2020, 44(1): 141-156.

    Google Scholar

    [51] 王梁, 王根厚, 雷时斌, 等. 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2015, 31(7): 1977-1994.

    Google Scholar

    [52] 王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的约束[J]. 地质学报, 2017, 91(7): 1467-1482.

    Google Scholar

    [53] 王兴安, 徐仲元, 刘正宏, 等. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景: 岩石地球化学、锆石U-Pb同位素年代学的制约[J]. 岩石学报, 2012, 28(8): 2647-2655.

    Google Scholar

    [54] 吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 2007, 26(1): 57-66.

    Google Scholar

    [55] 肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4.

    Google Scholar

    [56] 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124.

    Google Scholar

    [57] 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844.

    Google Scholar

    [58] 薛怀民, 郭利军, 侯增谦, 等. 中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据[J]. 岩石学报, 2009, 25(8): 2001-2010.

    Google Scholar

    [59] 张超, 吴新伟, 刘永江, 等. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J]. 岩石学报, 2020, 36(4): 1091-1106.

    Google Scholar

    [60] 张慧婷, 张长青, 张乔. 内蒙古中东部蘑菇气地区玛尼吐组火山岩构造背景[J]. 西安科技大学学报, 2019, 39(5): 802-810

    Google Scholar

    [61] 张克信, 潘桂棠, 何卫红, 等. 中国构造-地层大区划分新方案[J]. 地球科学(中国地质大学学报), 2015, 40(2): 206-233.

    Google Scholar

    [62] 张旗, 李承东. 花岗岩[M]. 北京: 海洋出版社, 2012a.

    Google Scholar

    [63] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012b, 31(4): 621-626.

    Google Scholar

    [64] 张晓晖, 翟明国. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J]. 岩石学报, 2010, 26(5): 1329-1341.

    Google Scholar

    [65] 张艳飞, 周永恒, 董洋, 等. 内蒙古拜仁达坝石炭纪岩体年代学、地球化学、Sr-Nd同位素特征及其对中亚造山带的制约[J]. 地球科学, 2022, 47(4): 1234-1252.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(750) PDF downloads(121) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint