| Citation: | HU Peng, DUAN Ming, XIONG Jinlian, ZENG Wei, LIU Xing, YAN Guoqiang, WEI Jialin. 2023. Genesis of Late Triassic Harasu porphyritic syenogranite in Zalantun area, Inner Mongolia: Zircon U-Pb age, Hf isotope and geochemical evidence. Geological Bulletin of China, 42(12): 2109-2120. doi: 10.12097/j.issn.1671-2552.2023.12.007 |
In this paper, the geochronology, geochemistry and Hf isotopic composition of the Harasu porphyritic syenogranite in Zalantun, Inner Mongolia were studied.LA-ICP-MS zircon dating indicates that the Harasu porphyritic syenogranite was emplaced during the Late Triassic(213.17±0.93 Ma).The mineral assemblage is mainly composed of quartz, alkaline feldspar and plagioclase.The Harasu porphyritic syenogranite is characterized by high SiO2(72.56%~74.36%), K2O(4.74%~5.49%), low MgO(0.12%~0.34%), CaO(0.54%~0.95%), TiO2(0.19%~0.29%) and P2O5(0.042%~0.053%), A/CNK=1~1.05, < 1.1.It is strongly depleted in Ba, Sr, Eu, P and Ti, showing the geochemical characteristics of aluminous A-type granite.The Harassu A-type granites have high εHf(t) values(+9.08~+15.3), which may due to the partial melting of new meso-basic crustal materials.The Harasu A-type granite is recognized as the product of a post-orogenic tectonic.The crust in Zalantun area was thickened and transformed into a post orogenic extension mechanism, which may be affected by the remote effect of the closure of the Paleo-Asian Ocean, and then the Late Triassic Harasu porphyritic syenogranite in Zalantun area was formed.
| [1] | Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters[J]. Chemical Geology, 1985, 48(1): 43-55. |
| [2] | Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 |
| [3] | Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1): 1-29. |
| [4] | Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895 |
| [5] | Dall'Agnol R, de Oliveira D C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 2007, 93(3): 215-233. |
| [6] | Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134. |
| [7] | Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033 |
| [8] | Frost C D, Frost B R. Reduced rapakivi-type granites, the tholeiite connection[J]. Geology(Boulder), 1997, 25(7): 647-650. |
| [9] | Frost C D, Frost B R. On Ferroan(A-type)granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1): 39-53. doi: 10.1093/petrology/egq070 |
| [10] | Hildreth W, Halliday A N, Christiansen R L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field[J]. Journal of Petrology, 1991, 32(1): 63-138. doi: 10.1093/petrology/32.1.63 |
| [11] | Kemp A I S, Wormald R J, Whitehouse M J, et al. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia[J]. Geology(Boulder), 2005, 33(10): 797-800. |
| [12] | Landenberger B, Collins W J. Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia[J]. Journal of Petrology, 1996, 37(1): 145-170. doi: 10.1093/petrology/37.1.145 |
| [13] | Liu Y J, Li W M, Feng Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian orogenic belt[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013 |
| [14] | Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 |
| [15] | Ludwig K R. User's Manual for Isoplot/EX Version 3.00: A geochoronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003: 1-70. |
| [16] | Li G Y, Zhou J B, Li L. A new tectonic framework for the composite orogenic metallogenic systems in the east of North China: The role of the Heilongjiang Ocean in the Late Paleozoic to Mesozoic[J]. Ore Geology Reviews, 2021, 136: 104293. doi: 10.1016/j.oregeorev.2021.104293 |
| [17] | Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
| [18] | Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 348-370 |
| [19] | Mushkin A, Navon O, Halicz L, et al. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. doi: 10.1093/petrology/44.5.815 |
| [20] | Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology(Boulder), 1997, 25(8): 743-746. |
| [21] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 |
| [22] | Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1): 123-138. |
| [23] | Sun W D, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
| [24] | Tong Y, Jahn B M, Wang T, et al. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance[J]. Journal of Asian Earth Sciences, 2015, 97: 320-336. doi: 10.1016/j.jseaes.2014.10.011 |
| [25] | Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X |
| [26] | Whalen J B, Currie K L, Chappel B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202 |
| [27] | Whitaker M L, Whitaker M L, Nekvasil H, et al. Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation[J]. Bulletin of Volcanology, 2008, 70(3): 417-434. doi: 10.1007/s00445-007-0146-1 |
| [28] | Wu F, Jahn B, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1): 89-113. |
| [29] | Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015 |
| [30] | Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106. |
| [31] | Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 249(3/4): 262-281. |
| [32] | Zhang X H, Yuan L L, Xue F H, et al. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton-orogen boundary[J]. Lithos, 2012, 144/145: 12-23. doi: 10.1016/j.lithos.2012.03.022 |
| [33] | Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1): 311-327. doi: 10.1016/j.gr.2014.02.011 |
| [34] | 陈彦, 张志诚, 李可, 等. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义[J]. 北京大学学报(自然科学版), 2014, 50(5): 843-858. |
| [35] | 崔玉荣, 涂家润, 李国占, 等. LA-ICP-MS榍石U-Pb定年方法[J]. 华北地质, 2022, 45(4): 53-59. |
| [36] | 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 |
| [37] | 洪大卫, 王式, 谢锡林, 等. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, 77(2): 441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012 |
| [38] | 洪大卫, 王式洸, 谢锡林, 等. 从中亚正ε(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系[J]. 地质学报, 2003, (2): 203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008 |
| [39] | 华北, 高雪, 胡兆国, 等. 兴蒙造山带西段乌珠新乌苏花岗岩岩石成因和构造背景: 地球化学、U-Pb年代学和Sr-Nd-Hf同位素约束[J]. 岩石学报, 2020, 36(5): 1426-1444. |
| [40] | 黄波, 付冬, 李树才, 等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报, 2016, 32(1): 158-176. |
| [41] | 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 |
| [42] | 雷豪, 张贵宾, 徐备. 兴蒙造山带晚古生代伸展减薄过程: 来自内蒙林西地区岩体的地球化学证据[J]. 岩石学报, 2022, 47(19): 3354-3370. |
| [43] | 李冬雪, 郑常青, 梁琛岳, 等. 大兴安岭中段扎兰屯南部花岗质糜棱岩岩石成因及地质意义[J]. 地球科学, 2022, 47(9): 3354-3370. |
| [44] | 李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128. |
| [45] | 刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 |
| [46] | 刘文斌, 杨延伟, 刘翔, 等. 内蒙古扎兰屯地区印支期二长花岗岩构造演化: 来自地球化学特征和锆石U-Pb年龄的制约[J]. 地质通报, 2021, 40(5): 698-706. |
| [47] | 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23. |
| [48] | 钱程, 陆露, 秦涛, 等. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳-兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 2018, 92(11): 2190-2214. doi: 10.3969/j.issn.0001-5717.2018.11.002 |
| [49] | 施光海, 苗来成, 张福勤, 等. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J]. 科学通报, 2004, 49(4): 384-389. doi: 10.3321/j.issn:0023-074X.2004.04.015 |
| [50] | 石文杰, 赵旭, 魏俊浩, 等. 兴蒙造山带南段白音图嘎地区A型花岗岩地球化学特征及其对古亚洲洋演化的制约[J]. 大地构造与成矿学, 2020, 44(1): 141-156. |
| [51] | 王梁, 王根厚, 雷时斌, 等. 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2015, 31(7): 1977-1994. |
| [52] | 王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的约束[J]. 地质学报, 2017, 91(7): 1467-1482. |
| [53] | 王兴安, 徐仲元, 刘正宏, 等. 大兴安岭中部柴河地区钾长花岗岩的成因及构造背景: 岩石地球化学、锆石U-Pb同位素年代学的制约[J]. 岩石学报, 2012, 28(8): 2647-2655. |
| [54] | 吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 2007, 26(1): 57-66. |
| [55] | 肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. |
| [56] | 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124. |
| [57] | 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844. |
| [58] | 薛怀民, 郭利军, 侯增谦, 等. 中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?——锆石SHRIMP U-Pb年代学证据[J]. 岩石学报, 2009, 25(8): 2001-2010. |
| [59] | 张超, 吴新伟, 刘永江, 等. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J]. 岩石学报, 2020, 36(4): 1091-1106. |
| [60] | 张慧婷, 张长青, 张乔. 内蒙古中东部蘑菇气地区玛尼吐组火山岩构造背景[J]. 西安科技大学学报, 2019, 39(5): 802-810 |
| [61] | 张克信, 潘桂棠, 何卫红, 等. 中国构造-地层大区划分新方案[J]. 地球科学(中国地质大学学报), 2015, 40(2): 206-233. |
| [62] | 张旗, 李承东. 花岗岩[M]. 北京: 海洋出版社, 2012a. |
| [63] | 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012b, 31(4): 621-626. |
| [64] | 张晓晖, 翟明国. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J]. 岩石学报, 2010, 26(5): 1329-1341. |
| [65] | 张艳飞, 周永恒, 董洋, 等. 内蒙古拜仁达坝石炭纪岩体年代学、地球化学、Sr-Nd同位素特征及其对中亚造山带的制约[J]. 地球科学, 2022, 47(4): 1234-1252. |
Tectonic framework of the NE China(a) and geological map of Zalantun Halasu area(b)
Hand specimen(a) and micrograph(b) of porphyritic syenogranite(cross polarized light)
CL images(a) of representative zircons from the porphyritic syenogranite and zircon U-Pb concordia diagram(b)in Harasu area
Plots of SiO2 vs.(K2O+Na2O)(a), SiO2 vs.K2O(b) and A/CNK vs.A/NK(c)of the porphyritic syenogranite in Hakasu area
Chondrite normalized REE distribution patterns(a) and primitive mantle normalized trace element spider diagrams(b)of the porphyritic syenogranite in Halasu area
Rock type discriminant diagrams for the Harasu porphyritic syenogranite
t-εHf(t) diagram for the Harasu porphyritic syenogranite
Tectonic discriminant diagrams of the Harasu porphyritic syenogranite