2023 Vol. 42, No. 12
Article Contents

LEI Congcong, BO Haijun, DING Haisheng, WANG Wenbao, MA Jun, LI Weixing. 2023. Zircon LA-ICP-MS U-Pb dating and tectonic setting of volcanic rocks from Baishan Formation in Late Carboniferous in Yagan area, Inner Mongolia. Geological Bulletin of China, 42(12): 2096-2108. doi: 10.12097/j.issn.1671-2552.2023.12.006
Citation: LEI Congcong, BO Haijun, DING Haisheng, WANG Wenbao, MA Jun, LI Weixing. 2023. Zircon LA-ICP-MS U-Pb dating and tectonic setting of volcanic rocks from Baishan Formation in Late Carboniferous in Yagan area, Inner Mongolia. Geological Bulletin of China, 42(12): 2096-2108. doi: 10.12097/j.issn.1671-2552.2023.12.006

Zircon LA-ICP-MS U-Pb dating and tectonic setting of volcanic rocks from Baishan Formation in Late Carboniferous in Yagan area, Inner Mongolia

More Information
  • Arc igneous rocks play the key role in tracing the magmatic process in the subduction zone.The Baishan Formation in the Yagan region is mainly composed of rhyolite, dacite, rhyolitic crystal tuff and dacitic crystal tuff.LA-ICP-MS U-Pb dating were conducted on zircons from the rhyolites, and the weighted mean ages are 309±1 Ma, 308±1 Ma and 300±2 Ma, suggesting that the volcanic rocks was erupted during Late Carboniferous.The rhyolites have high SiO2(70.98%~75.45%) and Na2O(2.90%~5.23%) contents, and all samples are relatively rich in Na and have the average Na2O/K2O ratios of 1.57.The volcanic rocks are relatively enriched in large ion lithophile elements, such as Rb, K and U, and depleted in high field strength elements, such as Nb, P and Ti.They show right-leaning chondrite-normalized patterns, which means enrichment in LREE and depletion in HREE, with(La/Yb) N ratios of 3.24~9.99, (La/Sm) N ratios of 4.47~8.31 and significant Eu negative anomalies(average value of δEu is 0.22).The geochemical characteristics of Baishan Formation volcanic rocks are similar to arc-related magmatism.These rocks are likely formed in a continental margin arc setting, and products of the subduction of the paleo-Asian ocean during Late Carboniferous.

  • 加载中
  • [1] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [2] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21: 87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [3] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[C]//Developments in Geochemistry, 1984: 63-114.

    Google Scholar

    [4] Dobrestsov N L, Berzin N A, Buslov M M. Opening and tectonic evolution of the Paleo-Asian ocean[J]. International Geology Review, 1995, 37(4): 335-360. doi: 10.1080/00206819509465407

    CrossRef Google Scholar

    [5] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addation of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23: 1093-1101. doi: 10.1039/b804760j

    CrossRef Google Scholar

    [6] Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[C]//Geological Society, London, Special Publications, 2004, 226: 73-100.

    Google Scholar

    [7] Kelemen P B, Hangh K, Greenem A R. One view of the geochemistry of subduction- related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L. Treatise on Geochemistry, 2003, 3: 593-659.

    Google Scholar

    [8] Liu Q, Zhao G C, Han Y G, et al. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 2017, 274/275: 19-30. doi: 10.1016/j.lithos.2016.12.029

    CrossRef Google Scholar

    [9] McDonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1012. doi: 10.1016/0016-7037(92)90043-I

    CrossRef Google Scholar

    [10] Mossakovsky A A, Ruzhentsev S V, Samygin S G, et al. Central Asian fold belt: Geodynamic evolution and history of formation[J]. Geotectonics, 1993, 6: 3-33.

    Google Scholar

    [11] Pearce J A. Trace element characterieristics of lavas from destructice plate boundaries [C]//Thorpe R S. Andesits. Chichest Er: Wiley, 1982: 525-548.

    Google Scholar

    [12] Pearce J A, Harris N B. W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 656-682.

    Google Scholar

    [13] Randall R, Parrish R R, Noble S R. Zircon U- Th- Pb geochronology by isotope dilution-thermal ionization mass spectrometry[J]. Mineralogy and Geochemistry, 2003, 53(1): 183-213. doi: 10.2113/0530183

    CrossRef Google Scholar

    [14] Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [15] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [16] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [17] Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth & Planetary Science Letters, 1976, 28(3): 450-469.

    Google Scholar

    [18] Wyllie P J. Plate tectonics and magmagenesis[J]. Geologische Rundschau Baud, 1991, 70: 128-150.

    Google Scholar

    [19] Wyllie P J, Ryabchikov I D. Volatile components, magmas andcritical fluids in upwelling mantle[J]. Journal of Petrology, 2000, 41(7): 1195-1206. doi: 10.1093/petrology/41.7.1195

    CrossRef Google Scholar

    [20] Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310(10): 1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [21] 薄海军, 白宇明, 李成元, 等. 内蒙古自治区额济纳旗呼仍巴斯克等四幅1: 5万区域地质矿产调查[R]. 呼和浩特武警黄金第二支队, 2019.

    Google Scholar

    [22] 陈元. 内蒙古额济纳旗拐子湖地区华力西期花岗岩岩浆作用[D]. 长安大学硕士学位论文, 2015.

    Google Scholar

    [23] 党犇, 赵虹, 林广春, 等. 阿拉善北部地区石炭纪火山岩岩石成因及构造意义[J]. 地球科学, 2013, 38(5): 963-974.

    Google Scholar

    [24] 范超峰. 内蒙古自治区拐子湖一带石炭纪白山组火山岩研究[D]. 长安大学硕士学位论文, 2015.

    Google Scholar

    [25] 顾连兴, 胡受奚, 于春水, 等. 东天山博格达造山带石炭纪火山岩及其形成地质环境[J]. 岩石学报, 2000, 16(3): 305-316.

    Google Scholar

    [26] 黄增保, 金霞. 甘肃红石山地区白山组火山岩地质特征及构造背景[J]. 甘肃地质, 2006, 15(1): 19-24.

    Google Scholar

    [27] 贾元琴, 赵志雄, 许海, 等. 北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境[J]. 中国地质, 2016, 43(1): 91-98.

    Google Scholar

    [28] 姜亭, 李玉宏, 陈高潮, 等. 内蒙古西部额济纳旗及邻区上石炭统—下二叠统阿木山组火山岩的地球化学特征[J]. 地质通报, 2011, 30(6): 932-942. doi: 10.3969/j.issn.1671-2552.2011.06.015

    CrossRef Google Scholar

    [29] 李锦轶, 宋彪, 王克卓, 等. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩: 中亚地区陆壳垂向生长的地质记录[J]. 地球学报, 2006, 27(5): 424-446. doi: 10.3321/j.issn:1006-3021.2006.05.006

    CrossRef Google Scholar

    [30] 刘巧峰. 内蒙古拐子湖温图高勒复式岩体地质、地区化学特征及构造意义[D]. 长安大学硕士学位论文, 2015.

    Google Scholar

    [31] 卢进才, 牛亚卓, 魏仙样, 等. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 岩石学报, 2013, 29(8): 2685-2694.

    Google Scholar

    [32] 牛文超, 辛后田, 段连峰, 等. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019a, 46(5): 977-994.

    Google Scholar

    [33] 牛文超, 段连峰, 赵泽霖, 等. 内蒙古1: 5万清河沟、红柳峡幅区域地质矿产调查[R]. 中国地质局天津地质调查中心, 2019b.

    Google Scholar

    [34] 牛亚卓, 魏建设, 史冀忠, 等. 甘肃北山地区北部上石炭统火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报, 2013, 32(11): 1720-1727. doi: 10.3969/j.issn.1671-2552.2013.11.004

    CrossRef Google Scholar

    [35] 任云伟, 任邦方, 牛文超, 等. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆活动的产物[J]. 地球科学, 2019, 44(1): 312-327.

    Google Scholar

    [36] 宋嘉佳. 阿拉善地块北部雅干断裂带周缘晚古生代花岗岩体特征[D]. 中国地质大学(北京)硕士学位论文, 2017.

    Google Scholar

    [37] 王振义, 丁海生, 王春辉, 等. 内蒙古自治区额济纳旗生格嘎顺、霍布哈尔幅1: 5万区域地质矿产调查[R]. 呼和浩特武警黄金第二支队, 2019.

    Google Scholar

    [38] 王振义, 李钢柱, 丁海生, 等. 内蒙古额济纳旗雅干地区北山岩群的厘定及其地质意义[J]. 地球科学, 2022, 47(4): 1177-1193.

    Google Scholar

    [39] 夏林圻, 李向民, 夏祖春, 等. 天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 西北地质, 2006, 39(1): 1-49. doi: 10.3969/j.issn.1009-6248.2006.01.001

    CrossRef Google Scholar

    [40] 夏林圻, 夏祖春, 徐学义, 等. 天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 西北地质, 2008, 41(4): 1-68.

    Google Scholar

    [41] 肖文交, 韩春明, 袁超, 等. 新疆北部石炭纪—二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 2006, 22(5): 1062-1076.

    Google Scholar

    [42] 徐学义, 何世平, 王洪亮, 等. 中国西北部地质概论——秦岭、祁连、天山地区[M]. 北京: 科学出版社, 2008.

    Google Scholar

    [43] 赵泽辉, 郭召杰, 张志诚, 等. 新甘交界红柳河地区下二叠统玄武岩地球化学特征及其形成的构造背景[J]. 高校地质学报, 2004, 10(4): 545-553.

    Google Scholar

    [44] 张雄华, 黄兴, 陈继平, 等. 东天山觉罗塔格地区石炭纪火山-沉积岩地层序列及地质时代[J]. 地球科学—中国地质大学学报, 2012, 37(6): 1305-1314.

    Google Scholar

    [45] 张善明, 贺中银, 赵鹏彬, 等. 阿拉善地块北缘乌力吉岩体锆石U-Pb年代学、地球化学及其对区域构造演化的制约[J]. 地球科学, 2021, 46(1): 101-121

    Google Scholar

    [46] 张文, 吴泰然, 冯继承, 等. 阿拉善地块北缘古大洋闭合的时间制约: 来自乌力吉花岗岩体的证据[J]. 中国科学: 地球科学, 2013, 43(8): 1299-1311.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1014) PDF downloads(135) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint