2023 Vol. 42, No. 11
Article Contents

XU Yinbo, YAO Shuqing, LUO Xiaoling, BI Caiqin. 2023. Logging response characteristics and identification model of oil shale of Lucaogou Formation in Shitoumei area of Santanghu Basin, Xinjiang. Geological Bulletin of China, 42(11): 1808-1817. doi: 10.12097/j.issn.1671-2552.2023.11.002
Citation: XU Yinbo, YAO Shuqing, LUO Xiaoling, BI Caiqin. 2023. Logging response characteristics and identification model of oil shale of Lucaogou Formation in Shitoumei area of Santanghu Basin, Xinjiang. Geological Bulletin of China, 42(11): 1808-1817. doi: 10.12097/j.issn.1671-2552.2023.11.002

Logging response characteristics and identification model of oil shale of Lucaogou Formation in Shitoumei area of Santanghu Basin, Xinjiang

More Information
  • This contribution studied the organic geochemistry and logging response characteristics of oil shale in Shitoumei area of Santanghu Basin and built a ΔlogR model based on the analysis of sample testing data and logging data, in order to establish a logging identification model of oil shale.The results show that the oil shale in the study area has high organic matter abundance and low maturity, and the organic matter type is Ⅰ—Ⅱ1 with a medium oil yield.Compared with surrounding rock, oil shale is characterized by high resistivity, high sonic interval transit time, low density and high natural gamma.The TOC of mudstone in the study area shows the best correlation with the resistivity and the sonic interval transit time logging and a calculation formula for ΔlogR model is thus established based on the superposition of the two logging curves.Then, through the coupling of the TOC data and ΔlogR, a logging identification model of TOC is established.The oil yield of oil shale in the study area has a good correlation with TOC, so the logging identification model of oil yield of oil shale is established based on the relevant formulas of oil yield and TOC, as well as the relevant formulas of TOC and ΔlogR.The correlation coefficient between the measured oil yield and the predicted oil yield based on this model can reach 0.86, indicating a good correlation.These models can be a basis for the subsequent identification of oil shale and the utilization of old well data in the study area.

  • 加载中
  • [1] Passey Q R, Creaney S, Kulla J B, et al. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1990, 74(12) : 1777-1794.

    Google Scholar

    [2] Tao S, Xu Y B, Tang D Z, et al. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: Implications for paleoclimate conditions, weathering, provenance and tectonic setting [J]. International Journal of Coal Geology, 2017, 184: 42-56. doi: 10.1016/j.coal.2017.11.007

    CrossRef Google Scholar

    [3] Wang H J, Wu W, Chen T, et al. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs[J]. Journal of Petroleum Science and Engineering, 2019, 176: 664-678. doi: 10.1016/j.petrol.2019.01.096

    CrossRef Google Scholar

    [4] Wu Y H, Andreas L, Bernd W, et al. Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records[J]. Science in China Series D, 2007, 50(10) : 1548-1555. doi: 10.1007/s11430-007-0113-x

    CrossRef Google Scholar

    [5] 陈常超, 黄志龙, 陈旋, 等. 新疆三塘湖盆地上石炭统近源凝灰岩致密油藏形成条件[J]. 地质通报, 2018, 37(1) : 83-92.

    Google Scholar

    [6] 陈孟晋, 张建博. 浅议我国西北低煤阶含煤盆地煤层气的勘探对策[J]. 石油勘探与开发, 2003, 30(1) : 18-21.

    Google Scholar

    [7] 董清水, 王立贤, 于文斌, 等. 油页岩资源评价关键参数及其求取方法[J]. 吉林大学学报(地球科学版), 2006, 36(6) : 899-903. doi: 10.13278/j.cnki.jjuese.2006.06.005

    CrossRef Google Scholar

    [8] 范晶晶, 王延斌, 李永红. 鱼卡地区侏罗系油页岩测井评价及目标区优选[J]. 测井技术, 2016, 40(5) : 617-622. doi: 10.16489/j.issn.1004-1338.2016.05.017

    CrossRef Google Scholar

    [9] 方向, 郝翠果, 刘俊田, 等. 新疆三塘湖盆地芦草沟组混积岩型致密油形成条件与富集因素[J]. 地质通报, 2023, 42(2/3) : 397-410.

    Google Scholar

    [10] 贺君玲, 邓守伟, 陈文龙, 等, 利用测井技术评价松辽盆地南部油页岩[J]. 吉林大学学报(地球科学版), 2006, 36(6) : 906-911. doi: 10.13278/j.cnki.jjuese.2006.06.007

    CrossRef Google Scholar

    [11] 胡慧婷, 卢双舫, 刘超, 等. 测井资料计算源岩有机碳含量模型对比及分析[J]. 沉积学报, 2011, 29(6) : 1199-1205.

    Google Scholar

    [12] 胡霞, 王宇航. 松辽盆地北部嫩江组一段油页岩测井识别[J]. 地质与资源, 2014, 23(3) : 225-229.

    Google Scholar

    [13] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3) : 343-350.

    Google Scholar

    [14] 贾建亮. 基于地球化学-地球物理的松辽盆地上白垩统油页岩识别与资源评价[D]. 吉林大学博士学位论文, 2012.

    Google Scholar

    [15] 李红, 柳益群, 梁浩, 等. 三塘湖盆地二叠系陆相热水沉积方沸石岩特征及成因分析[J]. 沉积学报, 2012, 30(2) : 205-218.

    Google Scholar

    [16] 李玮, 柳益群, 董云鹏, 等. 新疆三塘湖地区石炭纪火山岩年代学、地球化学及其大地构造意义[J]. 中国科学: 地球科学, 2012, 42(11) : 1716-1731.

    Google Scholar

    [17] 李永红, 魏毅, 杨振宁, 等. 测井建模在柴北缘油页岩评价参数解释中的应用[J]. 中国煤炭地质, 2018, 30(增刊1) : 125-128.

    Google Scholar

    [18] 李玉宏, 姜亭, 武富礼, 等. 鄂尔多斯盆地东南部油页岩资源评价[J]. 地质通报, 2014, 33(9) : 1417-1424.

    Google Scholar

    [19] 李哲萱, 柳益群, 周鼎武, 等. 三塘湖盆地二叠系芦草沟组喷爆岩岩石学、矿物学特征及相关问题探讨[J]. 沉积学报, 2019, 37(3) : 455-465.

    Google Scholar

    [20] 栗维民, 梁浩. 三塘湖盆地上二叠统芦草沟组沉积环境[J]. 新疆石油地质, 2001, 22(6) : 497-498.

    Google Scholar

    [21] 梁世君. 吐哈探区油气勘探成果及潜力[J]. 新疆石油地质, 2020, 41(6) : 631-641.

    Google Scholar

    [22] 刘兴旺, 郑建京, 杨鑫, 等. 三塘湖盆地及其周缘地区古生代构造演化及原型盆地研究[J]. 天然气地质, 2010, 21(6) : 947-954.

    Google Scholar

    [23] 柳益群, 周鼎武, 冯乔, 等. 新疆北部二叠系特征及其三叠系界线划分[J]. 西北大学学报(自然科学版), 2006, 36(4) : 615-622.

    Google Scholar

    [24] 马永生. 找油没有捷径——关于油气勘探的几点思考[J]. 石油实验地质, 2020, 42(5) : 662-669.

    Google Scholar

    [25] 齐雪峰, 何云生, 赵亮, 等. 新疆三塘湖盆地二叠系芦草沟组古生态环境[J]. 新疆石油地质, 2013, 34(6) : 63-66.

    Google Scholar

    [26] 夏明. 新疆油页岩资源现状及潜力[J]. 新疆地质, 2020, 38(4) : 523-527.

    Google Scholar

    [27] 熊春雷, 杨曙光, 吕宁, 等. 三塘湖煤田库木苏矿区煤岩煤质及煤相特征[J]. 煤炭技术, 2021, 40(2) : 34-36.

    Google Scholar

    [28] 徐银波, 毕彩芹, 李锋, 等. 三塘湖盆地石头梅地区巴油页1井二叠系芦草沟组有机相分析[J]. 煤炭学报, 2022a, 47(11) : 4094-4104.

    Google Scholar

    [29] 徐银波, 毕彩芹, 张家强, 等. 新疆三塘湖盆地二叠系芦草沟组油页岩特征及成矿背景[J]. 地质与勘探, 2022b, 58(2) : 442-453.

    Google Scholar

    [30] 徐银波, 李锋, 张家强, 等. 三塘湖盆地石头梅地区二叠系芦草沟组有机质富集特征[J]. 地质学报, 2022c, 96(11) : 4010-4022.

    Google Scholar

    [31] 徐银波, 孙平昌, 李昭, 等. 准噶尔盆地吉木萨尔地区二叠系芦草沟组油页岩地球化学特征与成矿条件[J]. 中国地质, 2022d, 49(1) : 311-323.

    Google Scholar

    [32] 翟艇, 潘保芝. 农安扶余地区油页岩测井识别与总含油率计算[J]. 测井技术, 2015, 39(2) : 190-195.

    Google Scholar

    [33] 张国伟, 陶树, 汤达祯, 等. 三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征[J]. 煤炭学报, 2017, 42(8) : 2081-2089.

    Google Scholar

    [34] 张寒, 朱光有. 利用地震和测井信息预测和评价烃源岩——以渤海湾盆地富油凹陷为例[J]. 石油勘探与开发, 2007, 34(1) : 55-59

    Google Scholar

    [35] 张佳佳, 李宏兵, 姚逢昌. 油页岩的地球物理识别和评价方法[J]. 石油学报, 2012, 33(4) : 625-632.

    Google Scholar

    [36] 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8) : 69-80.

    Google Scholar

    [37] 张美琪, 刘招君, 孙平昌, 等. 新疆大长沟盆地下侏罗统八道湾组油页岩测井识别[J]. 中国煤炭地质, 2020, 32(6) : 27-35

    Google Scholar

    [38] 周鼎武, 柳益群, 邢秀娟, 等. 新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪[J]. 中国科学: 地球科学, 2006, 36(2) : 143-153.

    Google Scholar

    [39] 朱伯生, 冯建新, 胡斌, 等. 对三塘湖盆地基底的认识[J]. 新疆石油地质, 1997, 18(3) : 197-200.

    Google Scholar

    [40] 朱建伟, 赵刚, 刘博, 等. 油页岩测井识别技术及应用[J]. 吉林大学学报(地球科学版), 2012, 42(2), 289-295.

    Google Scholar

    [41] 朱振宇, 刘洪, 李幼铭. ΔlogR技术在烃源岩识别中的应用与分析[J]. 地球物理学进展, 2003, 18(4) : 647-649.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(740) PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint