2023 Vol. 42, No. 11
Article Contents

ZHANG Baolin, WANG Xuehai, SU Yanping, SHEN Xiaoli. 2023. The supernormal enrichment regularity and metallogenic conditions of hydrothermal vein-type nickel-cobalt ore deposit in the Cambrian black rock series of Jinxiu, Guangxi, South China. Geological Bulletin of China, 42(11): 1793-1807. doi: 10.12097/j.issn.1671-2552.2023.11.001
Citation: ZHANG Baolin, WANG Xuehai, SU Yanping, SHEN Xiaoli. 2023. The supernormal enrichment regularity and metallogenic conditions of hydrothermal vein-type nickel-cobalt ore deposit in the Cambrian black rock series of Jinxiu, Guangxi, South China. Geological Bulletin of China, 42(11): 1793-1807. doi: 10.12097/j.issn.1671-2552.2023.11.001

The supernormal enrichment regularity and metallogenic conditions of hydrothermal vein-type nickel-cobalt ore deposit in the Cambrian black rock series of Jinxiu, Guangxi, South China

  • A hydrothermal vein-type nickel-cobalt deposit was discovered in the Cambrian black rock series in Jinxiu, Guangxi, South China.The deposit is exceptionally rare and holds significant scientific and prospecting importance.This paper introduces the geological characteristics of the Longhua deposit, the rules governing ore enrichment, as well as mineralogical and geochemical investigations.The ore-bearing rock is carbonaceous mudstone in the lower part of the Cambrian Qingxi Formation, and the ore-bodies can be classified into two types: high-grade hydrothermal veins and low-grade disseminated types.Two main mineral assemblages are identified: Ni-Co-As and Ni-Co-S, occurring within the primary vein.Their distribution aligns with NWW and NNW trending faults, respectively.The primary ore minerals consist of Ni-Co arsenide, accompanied by a minor presence of sulfide, quartz and carbonate.Elemental contents of niccolite, gersdorffite, polydymite, millerite, skutterudite, bismuthite, and native bismuth minerals were analyzed using the electron probe method.Additionally, the Fe-Co-Ni ternary diagram of the primary ore minerals was examined.Based on the internal structure and paragenetic relationships of minerals, the sequence of mineral formation is elucidated, and the formation process of ore minerals can be divided into endogenic hydrothermal stage and epigenetic stage.The results of elemental mapping analysis reveal significant zonation characteristics in Ni, Co, and S elements within niccolite, possibly indicating secondary growth as the underlying cause.The hydrothermal vein-type nickel-cobalt deposit may be the product of the old crustal material recirculation before Caledonian Movement. The relationship between granites and mineralization is still difficult to judge. The supernormal enrichment of nickel-cobalt elements may mainly come from the late tectonic-fluid reformation.

  • 加载中
  • [1] Ahmed A H, Arai S, Ikenne M. Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco[J]. Economic Geology, 2009, 104(2) : 249-266. doi: 10.2113/gsecongeo.104.2.249

    CrossRef Google Scholar

    [2] Boström K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[C]// Rona P A, Boström K, Laubier L, et al. Hydrothermal Processes at Seafloor Spreading Centers. New York: Springer, 1983: 473-483.

    Google Scholar

    [3] Cao J, Hu K, Zhou J, et al. Organic clots and their differential accumulation of Ni and Mo within early Cambrian black-shale-hosted polymetallic Ni-Mo deposits, Zunyi, South China[J]. Journal of Asian Earth Sciences, 2013, 62: 531-536. doi: 10.1016/j.jseaes.2012.11.002

    CrossRef Google Scholar

    [4] Coveney R M, Chen N S. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States[J]. Mineralium Deposita, 1991, 26(2) : 83-88. doi: 10.1007/BF00195253

    CrossRef Google Scholar

    [5] Coveney R M, Pašava J. Diverse connections between ores and organic matter[J]. Ore Geology Reviews, 2004, 24(1/2) : 1-5.

    Google Scholar

    [6] Cui M M, Su B X, Wang J, et al. Linking selective alteration, mineral compositional zonation and sulfide melt emplacement in orogenic-type magmatic Ni-Cu sulfide deposits[J]. Journal of Petrology, 2022, 63(6) : egac043. doi: 10.1093/petrology/egac043

    CrossRef Google Scholar

    [7] Feng C Y, Zhang D Q. Cobalt deposits of China: Classification, distribution and major advances[J]. Acta Geologica Sinica, 2004, 78(2) : 352-357. doi: 10.1111/j.1755-6724.2004.tb00139.x

    CrossRef Google Scholar

    [8] Hitzman M W, Bookstrom A A, Slack J F, et al. Cobalt—styles of deposits and the search for primary deposits[M]. Reston, VA: U.S. Geological Survey, 2017.

    Google Scholar

    [9] Horn S, Gunn A G, Petavratzi E, et al. Cobalt resources in Europe and the potential for new discoveries[J]. Ore Geology Reviews, 2021, 130: 103915. doi: 10.1016/j.oregeorev.2020.103915

    CrossRef Google Scholar

    [10] Huang W T, Wu J, Liang H Y, et al. Geology, Geochemistry and genesis of the Longhua low-temperature hydrothermal Ni-Co arsenide deposit in sedimentary rocks, Guangxi, South China[J]. Ore Geology Reviews, 2020, 120: 103393. doi: 10.1016/j.oregeorev.2020.103393

    CrossRef Google Scholar

    [11] Jiang S Y, Chen Y Q, Ling H F, et al. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze platform, South China[J]. Mineralium Deposita, 2006, 41(5) : 453-467. doi: 10.1007/s00126-006-0066-6

    CrossRef Google Scholar

    [12] Jiang S Y, Yang J H, Ling H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2) : 217-228.

    Google Scholar

    [13] Kříbek B, Sykorová I, Pašava J, et al. Organic geochemistry and petrology of barren and Mo-Ni-PGE mineralized marine black shales of the Lower Cambrian Niutitang Formation(South China) [J]. International Journal of Coal Geology, 2007, 72(3/4) : 240-256.

    Google Scholar

    [14] Lehmann B, Frei R, Xu L G, et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze platform, China: Reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology, 2016, 111(1) : 89-103. doi: 10.2113/econgeo.111.1.89

    CrossRef Google Scholar

    [15] Li X F, Yu Y, Wang C Z. Caledonian granitoids in the Jinxiu area, Guangxi, South China: Implications for their tectonic setting[J]. Lithos, 2017, 272/273: 249-260. doi: 10.1016/j.lithos.2016.12.016

    CrossRef Google Scholar

    [16] Loukola-Ruskeeniemi K, Heino T. Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland[J]. Economic Geology, 1996, 91(1) : 80-110. doi: 10.2113/gsecongeo.91.1.80

    CrossRef Google Scholar

    [17] Mao J W, Lehmann B, Du A D, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of south China and its geologic significance[J]. Economic Geology, 2002, 97(5) : 1051-1061. doi: 10.2113/gsecongeo.97.5.1051

    CrossRef Google Scholar

    [18] Marchig V, Gundlach H, Möller P, et al. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 50(3) : 241-256. doi: 10.1016/0025-3227(82)90141-4

    CrossRef Google Scholar

    [19] Misra K C, Fleet M E. Textural and compositional variations in a Ni-Co-As assemblage[J]. Canadian Mineralogist, 1975, 13(1) : 8-14.

    Google Scholar

    [20] Orberger B, Vymazalova A, Wagner C, et al. Biogenic origin of intergrown Mo-sulphide- and carbonaceous matter in Lower Cambrian black shales(Zunyi Formation, southern China) [J]. Chemical Geology, 2007, 238(3/4) : 213-231.

    Google Scholar

    [21] Pašava J, Kříbek B, Vymazalová A, et al. Multiple sources of metals of mineralization in Lower Cambrian black shales of South China: Evidence from geochemical and petrographic study[J]. Resource Geology, 2008, 58(1) : 25-42. doi: 10.1111/j.1751-3928.2007.00042.x

    CrossRef Google Scholar

    [22] Pašava J, Frimmel H, Taiyi L, et al. Extreme PGE concentrations in Lower Cambrian acid tuff layer from the Kunyang phosphate deposit, Yunnan Province, South China--possible PGE source for Lower Cambrian Mo-Ni-polyelement ore beds[J]. Economic Geology, 2010, 105(6) : 1047-1056. doi: 10.2113/econgeo.105.6.1047

    CrossRef Google Scholar

    [23] Piña R, Gervilla F, Barnes S J, et al. Liquid immiscibility between arsenide and sulfide melts: Evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda(Spain) [J]. Mineralium Deposita, 2015, 50(3) : 265-279. doi: 10.1007/s00126-014-0534-3

    CrossRef Google Scholar

    [24] Qiu Z J, Fan H R, Goldfarb R, et al. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J]. Geochimica et Cosmochimica Acta, 2021a, 305: 1-18. doi: 10.1016/j.gca.2021.05.001

    CrossRef Google Scholar

    [25] Qiu Z J, Fan H R, Tomkins A, et al. Insights into salty metamorphic fluid evolution from scapolite in the Trans-North China Orogen: Implication for ore genesis[J]. Geochimica et Cosmochimica Acta, 2021b, 293: 256-276. doi: 10.1016/j.gca.2020.10.030

    CrossRef Google Scholar

    [26] Ren J B, He G W, Deng X G, et al. Metallogenesis of Co-rich ferromanganese nodules in the northwestern Pacific: Selective enrichment of metallic elements from seawater[J]. Ore Geology Reviews, 2022, 143: 104778. doi: 10.1016/j.oregeorev.2022.104778

    CrossRef Google Scholar

    [27] Shi C H, Cao J, Hu K, et al. New understandings of Ni-Mo mineralization in early Cambrian black shales of South China: Constraints from variations in organic matter in metallic and non-metallic intervals[J]. Ore Geology Reviews, 2014, 59: 73-82. doi: 10.1016/j.oregeorev.2013.12.007

    CrossRef Google Scholar

    [28] Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils: Insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeographym Palaeoclimatologym Palaeoecology, 2001, 169(3/4) : 165-191.

    Google Scholar

    [29] Tretiakova I G, Borisenko A S, Lebedev V I, et al. Cobalt mineralization in the Altai-Sayan orogen: Age and correlation with magmatism[J]. Russian Geology and Geophysics, 2010, 51(9) : 1078-1090. doi: 10.1016/j.rgg.2010.08.012

    CrossRef Google Scholar

    [30] Wagner T, Lorenz J. Mineralogy of complex Co-Ni-Bi vein mineralization, Bieber deposit, Spessart, Germany[J]. Mineralogical Magazine, 2002, 66(3) : 385-407. doi: 10.1180/0026461026630036

    CrossRef Google Scholar

    [31] Xu L G, Lehmann B, Mao J W. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: Evidence from Mo isotope, PGE, trace element, and REE geochemistry[J]. Ore Geology Reviews, 2013, 52: 66-84. doi: 10.1016/j.oregeorev.2012.06.003

    CrossRef Google Scholar

    [32] Yin R S, Xu L G, Lehmann B, et al. Anomalous mercury enrichment in Early Cambrian black shales of South China: Mercury isotopes indicate a seawater source[J]. Chemical Geology, 2017, 467: 159-167. doi: 10.1016/j.chemgeo.2017.08.010

    CrossRef Google Scholar

    [33] 陈懋弘, 李忠阳, 李青, 等. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J]. 地学前缘, 2015, 22(2) : 41-53.

    Google Scholar

    [34] 陈南生, 杨秀珍, 刘德汉, 等. 我国南方下寒武统黑色岩系及其中的层状矿床[J]. 矿床地质, 1982, 1(2) : 39-51. doi: 10.16111/j.0258-7106.1982.02.004

    CrossRef Google Scholar

    [35] 党院. 广西大瑶山地区早古生代成岩成矿作用研究: 以玉坡钨多金属矿为例[D]. 中国地质大学(北京) 博士学位论文, 2018.

    Google Scholar

    [36] 杜晓东, 邹和平, 苏章歆, 等. 广西大瑶山—大明山地区寒武纪砂岩-泥岩的地球化学特征及沉积-构造环境分析[J]. 中国地质, 2013, 40(4) : 1112-1128. doi: 10.3969/j.issn.1000-3657.2013.04.010

    CrossRef Google Scholar

    [37] 方贵聪, 王登红, 陈毓川, 等. 南岭铋矿床的产出特征及成因探讨[J]. 地质学报, 2021, 95(2) : 317-335. doi: 10.19762/j.cnki.dizhixuebao.2021101

    CrossRef Google Scholar

    [38] 丰成友, 张德全, 党兴彦. 中国钴资源及其开发利用概况[J]. 矿床地质, 2004, 23(1) : 93-100.

    Google Scholar

    [39] 高帮飞, 沈阳, 钟长汀, 等. 刚果(金) 绿纱铜钴矿床黑色页岩Rb-Sr测年及其区域成矿意义[J]. 地质学报, 2021, 95(4) : 1029-1049. doi: 10.3969/j.issn.0001-5717.2021.04.007

    CrossRef Google Scholar

    [40] 蒋少涌, 凌洪飞, 赵葵东, 等. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论[J]. 岩石矿物学杂志, 2008, 27(4) : 341-345.

    Google Scholar

    [41] 李欢, 刘云华, 李真, 等. 广西大瑶山大进花岗岩岩体的年代学、地球化学特征及其地质意义[J]. 东华理工大学学报(自然科学版), 2016, 39(1) : 29-37.

    Google Scholar

    [42] 李社宏, 粟阳扬, 严松, 等. 广西金秀北部石英脉型铜矿地质特征与成因分析[J]. 矿产与地质, 2018, 32(1) : 67-73.

    Google Scholar

    [43] 李晓峰, 华仁民, 马东升, 等. 大陆岩石圈伸展与斑岩铜矿成矿作用[J]. 岩石学报, 2019, 35(1) : 76-88.

    Google Scholar

    [44] 李振华, 金玺, 黄寅, 等. 广西镍矿成因类型浅析[J]. 南方国土资源, 2010, (2) : 31-32, 35.

    Google Scholar

    [45] 李佐峰, 何幼斌, 游国庆, 等. 广西大瑶山地区寒武系沉积环境及其演化[J]. 中国科技论文, 2016, 11(3) : 311-317.

    Google Scholar

    [46] 刘东盛, 王学求, 聂兰仕, 等. 中国钴地球化学异常特征、成因及找矿远景区预测[J]. 地球科学, 2022, 47(8) : 2781-2794.

    Google Scholar

    [47] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 1-281.

    Google Scholar

    [48] 罗泰义, 张欢, 李晓彪, 等. 遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征[J]. 矿物学报, 2003, 23(4) : 296-302.

    Google Scholar

    [49] 毛景文, 张光弟, 杜安道, 等. 遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定——兼论华南寒武系底部黑色页岩多金属成矿作用[J]. 地质学报, 2001, 75(2) : 234-243.

    Google Scholar

    [50] 农毅平, 宁雄荣, 刘家华, 等. 西大明山-大瑶山隆起带金银成矿元素地球化学特征[J]. 广西地质, 2000, 13(3) : 33-38.

    Google Scholar

    [51] 潘彤. 我国钴矿矿产资源及其成矿作用[J]. 矿产与地质, 2003, 17(4) : 516-518.

    Google Scholar

    [52] 朴永超, 王立刚, 胡志强, 等. 非洲某黑色页岩型硫化铜钴矿选矿工艺技术研究[J]. 中国矿业, 2018, 27(S2) : 159-163.

    Google Scholar

    [53] 苏本勋, 秦克章, 蒋少涌, 等. 我国钴镍矿床的成矿规律、科学问题、勘查技术瓶颈与研究展望[J]. 岩石学报, 2023, 39(4) : 968-980.

    Google Scholar

    [54] 孙凯, 张航, 卢宜冠, 等. 中非铜钴成矿带地质特征与找矿前景分析[J]. 中国地质, 2022, 49(1) : 103-120.

    Google Scholar

    [55] 王聚杰, 曾普胜, 麻菁, 等. 黑色岩系及相关矿产——以扬子地台为例[J]. 地质与勘探, 2015, 51(4) : 677-689.

    Google Scholar

    [56] 王明艳, 王安建, 邓圣富, 等. 澳大利亚布朗斯(Browns) Co-Cu-Ni多金属矿床地球化学特征及与中国南方黑色岩系金属矿床对比[J]. 大地构造与成矿学, 2011, 35(1) : 105-117.

    Google Scholar

    [57] 王伟. 贵州—广西地区寒武纪重晶石形成条件探讨[J]. 矿产与地质, 2011, 25(3) : 227-230.

    Google Scholar

    [58] 王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33) : 3825-3838.

    Google Scholar

    [59] 韦明, 杜英泉. 广西金秀罗丹铜钴矿成矿地质特征[J]. 南方国土资源, 2012, (5) : 38-40.

    Google Scholar

    [60] 吴朝东, 杨承运, 陈其英. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志, 1999, 18(1) : 26-39.

    Google Scholar

    [61] 熊松泉, 康志强, 冯佐海, 等. 广西大瑶山地区大进岩体的锆石U-Pb年龄、地球化学特征及其意义[J]. 桂林理工大学学报, 2015, 35(4) : 736-746.

    Google Scholar

    [62] 闫朋, 安鹏升, 刘志超, 等. 澳大利亚布朗斯炭质页岩铜镍钴矿工艺矿物学研究[J]. 金属矿山, 2017, 46(4) : 91-95.

    Google Scholar

    [63] 尹露, 李杰, 赵佩佩, 等. 一种新的适合富有机质沉积岩的Re-Os同位素分析方法初探[J]. 地球化学, 2015, 44(3) : 225-237.

    Google Scholar

    [64] 于晓飞, 公凡影, 李永胜, 等. 中国典型钴矿床地质特征及重点地区矿产资源预测[J]. 吉林大学学报(地球科学版), 2022, 52(5) : 1377-1418.

    Google Scholar

    [65] 翟裕生, 彭润民, 邓军, 等. 区域成矿学与找矿新思路[J]. 现代地质, 2001, 15(2) : 151-156.

    Google Scholar

    [66] 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24) : 2484-2500.

    Google Scholar

    [67] 郑大中, 郑若锋. 钴的迁移形式成矿机理初探[J]. 四川地质学报, 2010, 30(3) : 364-368.

    Google Scholar

    [68] 中国有色桂林矿产地质研究院有限公司. 广西金秀县龙华镍钴铜矿详查中间性报告[R]. 2016: 1-120.

    Google Scholar

    [69] 周永章, 郑义, 曾长育, 等. 关于钦-杭成矿带的若干认识[J]. 地学前缘, 2015, 22(2) : 1-6.

    Google Scholar

    [70] 周永章, 李兴远, 郑义, 等. 钦杭结合带成矿地质背景及成矿规律[J]. 岩石学报, 2017, 33(3) : 667-681.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1474) PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint