Citation: | XING Kai, ZHU Qing, REN Junping, ZOU Xiehua, NIU Maolin, LIU Jun'an, XIAO Yang. 2023. Research on the characteristics and market development trend of global lithium resources. Geological Bulletin of China, 42(8): 1402-1421. doi: 10.12097/j.issn.1671-2552.2023.08.012 |
In recent years, lithium has became one of the important emerging key minerals in the world and has been listed as strategic or critical mineral by China, the United States, Japan, the European Union, and other major economies in the world.The major economies pay more attention to the supply security of lithium resources.This study is conducted to comprehensively understand the global lithium resource characteristics and analyze the market development trend.This paper comprehensively combs the main metallogenic types, distribution characteristics, metallogenic epochs, typical metallogenic belts, as well as the market trends of lithium resources in major countries.In addition, this paper analyzes the supply-demand structure and price trend of global lithium resources, and puts forward several suggestions on ensuring the supply security of lithium resources in China.In general, the global lithium resources are rich, but the distribution, as well as supply and demand are highly concentrated.At present, the supply and demand, as well as the volume and price of international trade of global lithium resources have increased rapidly, with the vigorous development of the new energy industry all around the world.In order to relieve the tense supply situation, there are many lithium resource development projects in the world, and the investment in lithium exploration has increased year by year.As the largest lithium resource consumer in the world, China has insufficient domestic lithium resource supply and the degree of external dependence is up to 67%.Moreover, the lithium resource market of China still has problems such as imperfect industrial chain, weak financial system and weak international competitiveness of enterprises.This paper would provide considerable insights for global lithium resource characteristics, market development trends, and exploration investment.
[1] |
Bacanora Lithium Ltd. Sonora Lithium Bacanora Lithium[EB/OL]. (2022-06). |
[2] | Dewaele S, Hulsbosch N, Cryns Y, et al. Geological setting and timing of the world-class Sn, Nb-Ta and Li mineralization of Manono-Kitotolo(Katanga, Democratic Republic of Congo)[J]. Ore Geology Reviews, 2016, 72: 373-390. doi: 10.1016/j.oregeorev.2015.07.004 |
[3] | Ericksen G E. Salas R. Geology and resources of salars in the central Andes[R]. United States Geological Survey, open-file report, 1987: 88-210, 51. |
[4] | Evans R K. An abundance of lithium[R]. America: Lithium Corporation of America, 2008. |
[5] | Garrett D. Handbook of lithium and natural calcium chloride: Their deposits, processing, uses and properties[M]. Elsevier Academic Press, 2004: 651. |
[6] | Grew E S, Bosi F, Gunter M E, et al. Fluor-elbaite, lepidolite and Ta-Nb oxides from a pegmatite of the 3000 Ma Sinceni pluton, Swaziland: Evidence for lithium-cesium-tantalum(LCT) pegmatites in the Mesoarchean[J]. European Journal of Mineralogy, 2018, 30(2): 25-39. |
[7] | Harris P D, Robb L J, Tomkinson M J. The nature and structural setting of rare-element pegmatites along the nothern flank of the Barberton greenstone belt, South Africa[J]. South African Journal of Geology, 1995, 98(1): 82-94. |
[8] | Iltis A, Risacher F, Servant-Vildary S. Contribution a` l'etude hydrobiologique des lacs sale's du Sud de l'Altiplanobolivien[J]. Revue d'Hydrobiologie Tropicale, 1984, 17(3): 259-273. |
[9] | Kesler S E, Gruber P W, Medina, P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Review, 2012, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006 |
[10] | Kudryavtsev P. Lithium in nature, application, methods of extraction(review)[J]. Scientific Israel: Technological Advantages, 2016, 18(3): 63-83. |
[11] | Lowenstein T, Risacher F. Closed basin brine evolution and the influence of Ca-Cl inflow waters. Death Valley and Bristol Dry Lake, California, Qaidam Basin, China, and Salar de Atacama, Chile[J]. Aquatic Geochemistry, 2009, 15(1/2): 71-94. |
[12] | Mariana K, Milan R. Exsolution in niobian rutile from the pegmatite deposit at Greenbushes, Australia[J]. Canadian Mineralogist, 2005, 42(6): 1859-1870. |
[13] |
Memoria YLB[R]. |
[14] | Mohr S H, Mudd G M, Giurco D. Lithium resources and production: critical assessment and global projections[J]. Minerals, 2012, 2: 65-84. doi: 10.3969/j.issn.1006-5296.2012.02.001 |
[15] | Ngulube A D. La pegmatite de Manono(Zaire) et sa place dans la métallogénie kibarienne[D]. Unpublished PhD thesis of Laboratoire de Pétrologie, Université de Nancy I, 1994. |
[16] | Partington G A, McNaughton N J, Williams I S. A review of the geology, mineralization and geochronology of the Greenbushes pegmatite, WesternAustralia[J]. Economic Geology, 1995, 90: 616-635. doi: 10.2113/gsecongeo.90.3.616 |
[17] | Risacher F, Fritz B. Quaternary geochemical evolution of the salars of Uyuni and Coipasa. central Altiplano, Bolivia[J]. Chemical Geology, 1991, 90: 211-231. doi: 10.1016/0009-2541(91)90101-V |
[18] | Schulz K J, DeYoung J H, Jr. Seal R R II, et al. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply[R]. U.S. Geological Survey Professional Paper, 2017, 1802: 1-21. |
[19] | Solomon M, Groes D I. The Geology and Origin of Australia's Mineral Deposits[M]. Oxford Monpgraphs on Geology and Geophysics, 1994. |
[20] |
S&P Global Market Intelligence. S&P Global Market Intelligence(2022)[EB/OL]. (2022-06). |
[21] | Tkachev A V. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time, Granite-Related Ore Systems[J]. Geological Society, London, Special Publications, 2011, 350: 7-23. doi: 10.1144/SP350.2 |
[22] | Tkachev A V, Rundqvist D V, Vishnevskaya N A. Metallogeny of lithium through geological time[J]. Russian Journal of Earth Sciences, 2018, 18: 1-13. |
[23] | Trumbull R B. A petrological and Rb/Sr isotopic study of an early Archean fertile granitepegmatite system: the Sinceni pluton in Swaziland[J]. Precambrian Research, 1993, 61: 89-116. doi: 10.1016/0301-9268(93)90059-B |
[24] |
USGS. Mineral Commodity Summaries(2011-2022)[EB/OL]. (2022). |
[25] | Vikström H, Davidsson S, Höök M. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(10): 252-266. |
[26] | Wang D H, Dai H Z, Liu S B, et al. Research and exploration progress on lithium deposits in China[J]. China Geology, 2020, 3(1): 137-152. doi: 10.31035/cg2020018 |
[27] | Zhang B, Qi F Y, Gao X Z, et al. The geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 2022, 5(1): 1-34. doi: 10.31035/cg2022001 |
[28] | 澳大利亚IGO Limited公司. 2021年矿产资源量和储量声明[R]. 2021. |
[29] | 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1): 25-29. |
[30] | 曹庭语. 日本稀有金属保障战略[J]. 国土资源情报, 2011, (4): 42-46. |
[31] | 陈甲斌, 余良晖. 中美欧矿产资源形势对比分析[M]. 北京: 地质出版社, 2020. |
[32] | 陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 2021, 42(2): 137-144. |
[33] | 陈衍景, 薛莅治, 王孝磊, 等. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 2021, 95(10): 2971-2995. doi: 10.3969/j.issn.0001-5717.2021.10.004 |
[34] | 陈玉明, 邓小林. 阿根廷锂资源潜力及开发利用[J]. 盐湖研究, 2013, 4: 67-72. |
[35] | 邓小川, 朱朝梁, 史一飞, 等. 青海盐湖锂资源开发现状及对提锂产业发展建议[J]. 盐湖研究, 2018, 26(4): 11-18. |
[36] | 丁涛, 郑绵平, 张雪飞, 等. 盐湖卤水提锂技术及产业化发展[J]. 科技导报, 2020, 38(15): 16-23. |
[37] | 何金祥, 崔荣国, 刘伟, 等. 世界锂矿业发展与展望[J]. 国土资源情报, 2020, 4(10): 21-26. |
[38] | 何胜飞, 刘晓阳, 王杰, 等. 非洲中部基巴拉造山带地质特征与资源潜力分析[J]. 地质调查与研究, 2014, 37(3): 161-168. |
[39] | 官云龙, 柴文帅. 全球碳中和背景下的锂市场发展趋势[J]. 中国资源综合利用, 2021, 39(7): 92-96. |
[40] | 国泰君安证券. 锂-从全球供应链看锂行业供需格局[R]. 国泰君安证券研报, 2020. |
[41] | 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7. |
[42] | 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263-278. |
[43] | 刘源骏, 黎家祥, Wan H. 西澳大利亚卡尔古里金哩超大型金矿地质特征及成矿机理[J]. 资源环境与工程, 2016, 30(A1): 153-158. |
[44] | 强海洋, 高兵, 郭冬艳, 等. 碳中和背景下矿业可持续发展路径选择[J]. 中国国土资源经济, 2021, 34(4): 4-11. |
[45] | 屈金芝, 张艳松, 张艳, 等. 新形势下中国锂矿资源供应安全评价[J]. 中国矿业, 2021, 30(12): 1-7. |
[46] | 曲一华. 智利北部阿塔卡马富锂干盐湖地质[J]. 化工矿产地质, 1994, 2: 112-116. |
[47] | 施毅. 锂业风云——全球88个锂资源全梳理[R]. 海通国际, 2022. |
[48] | 舒良树, 王德滋. 北美西部与中国东南部盆岭构造对比研究[J]. 高校地质学报, 2006, 12(1): 1-13. |
[49] | 宋彭生, 项仁杰. 盐湖锂资源开发利用及对中国锂产业发展的建议[J]. 矿床地质, 2014, 33(5): 977-992. |
[50] | 苏慧, 朱兆武, 王丽娜, 等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报, 2019, 70(1): 10-23. |
[51] | 孙宏伟, 王杰, 任军平, 等. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 2021, 67(1): 265-278. |
[52] | 王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019, 33(2): 133-140. |
[53] | 王登红, 刘丽君, 代鸿章, 等. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向[J]. 地球科学, 2017, 42(12): 2243-2257. |
[54] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. |
[55] | 王高尚, 李建星. 全球锂、钴、镍、锡、钾盐矿产资源储量评估报告(2021)[R]. 中国地质调查局全球矿产资源战略研究中心, 2021. |
[56] | 王秋舒. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业, 2016, 3: 11-15, 24. |
[57] | 王秋舒, 元春华. 全球锂矿供应形势及我国资源安全保障建议[J]. 中国矿业, 2019, 28(5): 1-6. |
[58] | 王学评, 柴新夏, 崔文娟. 全球锂资源开发利用的现状与思考[J]. 中国矿业, 2014, 23(6): 10-13. |
[59] | 吴西顺, 孙艳, 王登红, 等, 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020, 6: 110-120. |
[60] | 五矿证券. 全球锂资源现状及发展前景[R]. 五矿证券研究所研报, 2021. |
[61] | 隰弯弯, 赵宇浩, 倪培, 等. 锂矿主要类型、特征、时空分布及找矿潜力分析[J]. 沉积与特提斯地质, 2023, 1: 21-37. |
[62] | 夏鹏, 朱清, 姚磊, 等. 全球矿业市场发展态势与展望[M]. 北京: 地质出版社, 2020. |
[63] | 夏鹏, 任收麦, 邹谢华, 等. 全球矿业发展报告2020-2021[M]. 北京: 地质出版社, 2022. |
[64] | 信达证券. 锂行业专题报告: 碳资产扩张推动需求超级周期[R]. 信达证券研究所研报, 2021. |
[65] | 许康康, 刘晓阳, 何胜飞, 等. 非洲中部基巴拉带的地质及构造演化特征[J]. 地质论评, 2019, 65(4): 993-1006. |
[66] | 许志琴, 王汝成, 赵中宝. 试论中国大陆"硬岩型"大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6): 1091-1106. |
[67] | 许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究[J]. 地质学报, 2021, 10: 5-22. |
[68] | 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019, 39(5): 26-40. |
[69] | 于沨, 王登红, 于扬, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 38(3): 354-364. |
[70] | 赵元艺, 符家骏, 李运. 塞尔维亚贾达尔盆地超大型锂硼矿床[J]. 地质论评, 2015, 1: 34-44. |
[71] | 郑绵平. 青藏高原盐湖资源研究的新进展[J]. 地球学报, 2001, 4(2): 97-102. |
[72] | 郑绵平, 刘喜方. 中国的锂资源[J]. 新材料产业, 2007, 8: 13-16. |
[73] | 战略性矿产重大问题研究(2021)[R]. 自然资源部矿产勘查技术指导中心, 2022: 152-159. |
[74] | 朱清, 牛茂林, 邹谢华. 基于行业差异的矿业企业减碳策略研究[J]. 中国国土资源经济, 2022, 35(4): 1-10. |
[75] |
自然资源部. 全国矿产资源规划(2016-2020年)[EB/OL]. (2022-04-06). |
Distribution type of global lithium resources in 2020
Distribution of major lithium resource projects in the world and reserves in major countries
Distribution of the mineralization age of large and super large lithium deposits in the world
Maps showing ore geology(a) and pegmatite zone(b)at Greenbushes deposit
Geological map of the larger Manono-Kitotolo area
Map of the southern part of the Atacama salar
Map of the Uyuni salar
Production, demand and year-on-year situation of lithium resources of major countries in the world from 2010 to 2021
The proportion of the lithium resource production of major countries in the world from 2010 to 2021
The import quantity and year-on-year situation of lithium resource in the world from 2010 to 2021
Proportion of lithium carbonate imports of major countries in the world in 2020
Proportion of lithium oxide and lithium hydroxide imports of major countries in the world in 2020
Investment scale of lithium resource exploration in major countries from 2010 to 2021
Major lithium resource projects in the world
The price of Australian spodumene from 2018
Prices of lithium carbonate and lithium hydroxide in major countries and regions from 2010 to 2021
Import and export of lithium carbonate and lithium hydroxide in China from 2010 to 2020