2023 Vol. 42, No. 8
Article Contents

SUN Hongwei, REN Junping, XU Kangkang, WU Xingyuan, TANG Wenlong, HE Fuqing. 2023. Geological characteristics and resource potential analysis of potash deposits in Africa. Geological Bulletin of China, 42(8): 1390-1401. doi: 10.12097/j.issn.1671-2552.2023.08.011
Citation: SUN Hongwei, REN Junping, XU Kangkang, WU Xingyuan, TANG Wenlong, HE Fuqing. 2023. Geological characteristics and resource potential analysis of potash deposits in Africa. Geological Bulletin of China, 42(8): 1390-1401. doi: 10.12097/j.issn.1671-2552.2023.08.011

Geological characteristics and resource potential analysis of potash deposits in Africa

  • Potash resources are distributed unevenly on a global scale, and their reserves and output are mainly concentrated in a few countries and companies.Finding new supply sites for potash resources is an important task for China's geological exploration workers due to scarcity of potash resources in China.Africa, rich in potash reserves, predominantly harbours them in countries such as Congo(Brazzaville), Ethiopia, Eritrea, Egypt, Morocco, among others.Potassium formations are mainly from the Cretaceous, Neogene, and Quaternary periods.The geological conditions of potash mineralization in Africa are excellent.For instance, the arid and hot environment induced seawater evaporation, and extensional tectonics led to the formation of numerous fault depressions, and multi-stage transgression events provided good conditions for the eventual formation of potash reserves in Africa.Based on the analysis of the geological characteristics, deposit types and metallogenetic potential of typical potash deposits(occurrences) in Africa, it is considered that the North sub-Basin of the Gabon-Congo Basin in West Africa, the central area of the Danakil Basin in East Africa and the dry salt lake area in Northwest Africa are favorable areas for potassium exploration.

  • 加载中
  • [1] Anka Z, Ondrak R, Kowitz A, et al. Identification and numerical modelling of hydrocarbon leakage in the Lower Congo Basin: implications on the genesis of km-wide seafloor mounded structures[J]. Tectonophysics, 2013, 604: 153-171. doi: 10.1016/j.tecto.2012.11.020

    CrossRef Google Scholar

    [2] Alsharhan A S. Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt[J]. AAPG Bulletin, 2003, 87(1): 143-180.

    Google Scholar

    [3] Brownfield M E, Charpentier R R. Geology and total petroleum systems of the West-Central Coastal province(7203), West Africa[J]. World Energy Project, 2006, 2207B: 52.

    Google Scholar

    [4] Bekele A, Schmerold R. Characterization of brines and evaporite deposits for their lithium contents in the northern part of the Danakil Depression and in some selected areas of the Main Ethiopian Rift lakes[J]. Journal of African Earth Sciences, 2020, 170: 1-17.

    Google Scholar

    [5] Evans R. Origin and significance of evaporites in basins around the Atlantic margin[J]. AAPG Bulletin, 1977, 61(2): 223-234.

    Google Scholar

    [6] Fluteau F, Ramstein G, Besse J, et al. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 247(3/4): 357-381.

    Google Scholar

    [7] Goudarzi G H. Geology and mineral resources of Libya-a reconnaissance[R]. USGS Professional Paper, 1970, 660: 104.

    Google Scholar

    [8] Garrett D E. Potash: Deposits, processing, properties and uses[M]. Chapman and Hall, 1996: 153-201.

    Google Scholar

    [9] Hite R J, Japakasetr T. Potash deposits of the Khorat Plateau, Thailand and Laos[J]. Economic Geology, 1979, 74: 448-458. doi: 10.2113/gsecongeo.74.2.448

    CrossRef Google Scholar

    [10] Holwerda U G, Hutchinson R W. Potash-bearing evaporites in the Danakil region, Ethiopia[J]. Economic Geology, 1968, 63(2): 124-150. doi: 10.2113/gsecongeo.63.2.124

    CrossRef Google Scholar

    [11] Harris N B. Evolution of the Congo rift basin, West Africa: An inorganic geochemical record in lacustrine shales[J]. Basin Research, 2008, 12(3/4): 425-445.

    Google Scholar

    [12] Lehner P, Ruiter P A C D. Structural history of the Atlantic margin of Africa[J]. AAPG Bulletin, 1977, 61(7): 961-981.

    Google Scholar

    [13] MDPA. Mines despotasse d'alsace company communications[R]. Unpublished Company Report, 1982.

    Google Scholar

    [14] Marton L G, Tari G C, Lehmann C T. Evolution of the Angolan passive margin, West Africa, with emphasis on postsalt structural styles[M]. Washington D C: American Geophysical Union, 2000: 129-149.

    Google Scholar

    [15] Northolt A J G. Potash in developing countries[C]//McKercher R M. Potash 83-potash technology-mining, processing, maintenance, transportation, occupational health and safety, environment: Toronto, Canada, Pergamon Press, 1983: 29-40.

    Google Scholar

    [16] Pedley A. Potash deposits in Africa[C]//Wilson M G C. Special Issue for the 35 IGC, Cape Town, South Africa, 2016: 447-457.

    Google Scholar

    [17] Rawashdeh R, Maxwell P. Analysing the World Potash Industry[J]. Resources Policy, 2014, 41: 143-151. doi: 10.1016/j.resourpol.2014.05.004

    CrossRef Google Scholar

    [18] Ruiter P A C D. The Gabon and Congo basins salt deposits[J]. Economic Geology, 1979, 74: 419-431. doi: 10.2113/gsecongeo.74.2.419

    CrossRef Google Scholar

    [19] Ringrose S, Huntsman M P, Kampunzu A B, et al. Sedimentological and geochemical evidence for palaeo-environmental change in the Makgadikgadi subbasin, in relation to the MOZ rift depression, Botswana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217(3/4): 265-287.

    Google Scholar

    [20] Séranne M, Anka Z. South Atlantic continental margins of Africa: a comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins[J]. Journal of African Earth Sciences, 2005, 43(1/2/3): 283-300.

    Google Scholar

    [21] Schléder Z, János L, Urai S, et al. Solution-precipitation creep and fluid flow in halite: a case study of Zechstein(Z1) rocksalt from Neuhof salt mine(Germany)[J]. International Journal of Earth Sciences, 2008, 97: 1045-1056. doi: 10.1007/s00531-007-0275-y

    CrossRef Google Scholar

    [22] Sun H W, Ren J P, Wang J, et al. Age and geochemistry of the granitoids from the Lunte area, Northeastern Zambia: implications for magmatism of the Columbia supercontinent[J]. China Geology, 2021, 4(4): 658-672.

    Google Scholar

    [23] Scotese C R, Boucot A J, Mckerrow W S. Gondwanan paleogeography and paleoclimatology[J]. Journal of African Earth Sciences, 1999, 128(1): 99-114.

    Google Scholar

    [24] USGS. Mineral Commodity Summaries 2021[EB/OL]. [2021-02-01]. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021.pdf.

    Google Scholar

    [25] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth Science Reviews, 2010, 98(3/4): 217-268.

    Google Scholar

    [26] Warren J K. Evaporites: sediments, resources and hydrocarbons[M]. Springer, 2005.

    Google Scholar

    [27] Wright T J, Ebinger C, Biggs J, et al. Magma-maintained rift segmentation at continental rupture in the 2005 afar dyking Episode[J]. Nature, 2006, 442: 291-294. doi: 10.1038/nature04978

    CrossRef Google Scholar

    [28] Zhao X F, Wang Z Q, Liu C L, et al. Characteristics and geological significance of Re-Os Isotopic system of evaporites in Mboukoumassi deposit, the Republic of Congo[J]. Journal of African Earth Sciences, 2018, 138: 14-21. doi: 10.1016/j.jafrearsci.2017.10.020

    CrossRef Google Scholar

    [29] Zientek M L, Hammarstrom J M, Johnson K M. Potash-A global overview of evaporite-related potash resources, including spatial databases of deposits, occurrences, and permissive tracts[R]. Scientific Investigations Report 2010-5090-S, U.S. Department of the Interior, USGS, 2010.

    Google Scholar

    [30] 白仟, 张寿庭, 袁俊宏, 等. 钾盐矿物与矿床[J]. 化工矿物与加工, 2014, 43(7): 20-26. doi: 10.16283/j.cnki.hgkwyjg.2014.07.003

    CrossRef Google Scholar

    [31] 白佳鑫, 佘延双. 全球钾矿资源的生产勘探与开发分析[J]. 中国矿业, 2017, 26(s1): 1-4.

    Google Scholar

    [32] 程鹏, 李江海, 刘志强. 下刚果盆地中段挤压带盐底辟构造形成演化分析——基于物理及离散元模拟[J]. 北京大学学报(自然科学版), 2021, 57(3): 470-480. doi: 10.13209/j.0479-8023.2021.025

    CrossRef Google Scholar

    [33] 曹烨, 郑厚义, 要梅娟, 等. 世界钾盐资源成矿区带划分初步研究[J]. 矿产勘查, 2015, 6(6): 775-780. doi: 10.3969/j.issn.1674-7801.2015.06.017

    CrossRef Google Scholar

    [34] 范美玲, 刘成林, 焦鹏程, 等. 刚果(布) 布谷马西钾盐矿床盐类矿物特征与成因研究[J]. 矿床地质, 2016, 35(6): 1257-1268.

    Google Scholar

    [35] 黄兴, 杨香华, 朱红涛, 等. 下刚果盆地Madingo组海相烃源岩岩相特征和沉积模式[J]. 石油学报, 2017, 38(10): 74-88.

    Google Scholar

    [36] 李萌, 刘正阳, 王建平, 等. 我国钾盐资源现状分析及可持续发展建议[J]. 中国矿业, 2016, 25(9): 1-7. doi: 10.3969/j.issn.1004-4051.2016.09.001

    CrossRef Google Scholar

    [37] 刘成林, 王弭力, 焦鹏程, 等. 世界主要古代钾盐找矿实践与中国找钾对策[J]. 化工矿产地质, 2006, 28(1): 1-8. doi: 10.3969/j.issn.1006-5296.2006.01.001

    CrossRef Google Scholar

    [38] 刘成林. 大陆裂谷盆地钾盐矿床特征与成矿作用[J]. 地球学报, 2013, 34(5): 515-527.

    Google Scholar

    [39] 刘成林, 赵艳军, 方小敏, 等. 板块构造对海相钾盐矿床分布与成矿模式的控制[J]. 地质学报, 2015, 89(11): 1893-1907.

    Google Scholar

    [40] 李一赫, 王殿举, 于法浩, 等. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.

    Google Scholar

    [41] 栾永大, 李博昀, 谭登华, 等. 博茨瓦纳马卡迪卡迪盐湖卤水特征及找钾前景分析[J]. 化工矿产地质, 2019, 41(2): 8.

    Google Scholar

    [42] 毛翔, 李江海, 刘金侠. 全球钾盐资源分布规律及其构造成因[J]. 高校地质学报, 2017, 23(1): 63-71.

    Google Scholar

    [43] 牟思宇, 沙景华, 闫晶晶, 等. 中国钾盐供应安全的主成分——灰色关联分析[J]. 中国矿业, 2018, 27(3): 27-31.

    Google Scholar

    [44] 乜贞, 卜令忠, 刘建华, 等. 我国盐湖钾盐资源现状及提钾工艺技术进展[J]. 地球学报, 2010, 31(6): 869-874.

    Google Scholar

    [45] 孙宏伟, 曹养同, 张华. 蒸发岩盆地杂卤石成因及找钾意义[J]. 化工矿产地质, 2014, 36(1): 113-123.

    Google Scholar

    [46] 孙宏伟. 新疆莎车盆地上白垩统-古近系蒸发岩沉积特征及其找钾指示意义[D]. 中国地质大学(北京) 硕士学位论文, 2014.

    Google Scholar

    [47] 孙宏伟, 王杰, 任军平, 等. 班韦乌卢地块中部变质表壳岩碎屑锆石U-Pb年代学、Hf同位素研究及其构造意义[J]. 地质学报, 2021, 95(4): 1245-1259.

    Google Scholar

    [48] 孙宏伟, 任军平, 王杰, 等. 南部非洲锰矿成矿规律与资源潜力[J]. 地质通报, 2022, 41(1): 60-71.

    Google Scholar

    [49] 单慧媚, 马腾, 谭婷, 等. 博茨瓦纳Sua盐湖地下卤水来源及成因[J]. 地球科学, 2013, 3: 607-615.

    Google Scholar

    [50] 谭志敏. 吉布提共和国地质及地下水资源浅析[J]. 河北地质矿产信息, 2000, 2: 5.

    Google Scholar

    [51] 田雨, 瞿建华, 何巍, 等. 苏伊士湾中新统蒸发岩储层特征及有利区预测[J]. 特种油气藏, 2021, 28(4): 72-78.

    Google Scholar

    [52] 唐尧. 中国钾盐资源需求预测及发展远景分析[J]. 盐湖研究, 2016, 24(1): 66-72.

    Google Scholar

    [53] 王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. 华北地质, 2022, 45(1): 101-110.

    Google Scholar

    [54] 王新民, 袁崇清, 陈建中. 罗北凹地钾盐矿区潜卤水组分分布及动态特征[J]. 西部探矿工程, 2003, 15(11): 37-40.

    Google Scholar

    [55] 王磊, 张旭. 吉布堤阿萨勒盐湖形成条件分析[J]. 化工矿产地质, 2015, 37(3): 157-162.

    Google Scholar

    [56] 王春宁, 余俊清, 陈良, 等. 钾盐资源全球分布和我国找钾实践及方法探究[J]. 盐湖研究, 2007, 9(3): 56-72.

    Google Scholar

    [57] 魏东岩. 试论钾盐矿床的成矿条件[J]. 化工矿产地质, 1999, 21(1): 1-6.

    Google Scholar

    [58] 许康康, 孙凯, 何胜飞, 等. 赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021, 44(3): 1-3.

    Google Scholar

    [59] 徐少康. 现代盐湖晶间卤水分异成因的新观点阶段性淡化说——以中国查尔汗为例[J]. 化工矿产地质, 1996, 18(2): 113-123.

    Google Scholar

    [60] 颜开, 刘成林, 王春连, 等. 刚果盆地西南部白垩纪蒸发岩矿物与古环境特征[J]. 岩石矿物学杂志, 2021, 40(3): 525-534.

    Google Scholar

    [61] 杨卉芃, 曹飞. 世界钾资源研究系列之一——资源概况及供需分析[J]. 矿产保护与利用, 2015, 1: 75-78.

    Google Scholar

    [62] 袁见齐. 钾肥与钾盐矿床[M]. 北京: 石油化学工业出版社, 1977: 45-47.

    Google Scholar

    [63] 郑绵平, 齐文, 张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 2006, 25(11): 1239-1246.

    Google Scholar

    [64] 郑绵平, 张震, 侯献华, 等. 中国钾资源远景与矿业发展战略[J]. 国土资源情报, 2015, 10: 3-9.

    Google Scholar

    [65] 赵玉海, 商朋强, 李博昀, 等. 吉布提阿萨勒(ASSAL) 盐湖的卤水钾盐矿床赋存特征[J]. 化工矿产地质, 2015, 37(3): 163-167.

    Google Scholar

    [66] 张帆, 徐海明, 刘成林, 等. 非洲下刚果盆地钾盐矿床特征、沉积旋回与沉积模式[J]. 矿床地质, 2016, 35(6): 1230-1242.

    Google Scholar

    [67] 张大权, 曹洁, 王利, 等. 东非达纳基尔坳陷区钾盐矿开发潜力分析[J]. 国土资源情报, 2015, 10: 35-39.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2359) PDF downloads(137) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint