Citation: | XI Chaozhuang, ZHANG Pengfei, WU Linfeng, YANG Mingtai, FAN Yunfei, DENG Huijuan. 2023. Investigation and evaluation of heavy metal pollution in cultivated land in Huishui County, Guizhou Province. Geological Bulletin of China, 42(7): 1228-1239. doi: 10.12097/j.issn.1671-2552.2023.07.014 |
This paper has collected 5013 surface soil samples to determine the contents of Cd, Hg, As, Pb, Cr, Cu, Ni, Zn, and pH values, and has chosen single factor pollution index method and ground accumulation index method to evaluate the status of heavy metal pollution in crop-soil and has carried out some correlation analysis and principal component analysis to study the current situation of heavy metal pollution in cultivated soil of Huishui County, Guizhou Province. The results show that: ①The excess rates of soil heavy metal elements As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were 8.74%, 34.51%, 3.83%, 0.56%, 1.56%, 0.24%, 0.04%, and 1.60% respectively. And the mean values of Cd(k1=1.46) and Hg(k1=1.60) exceeded the background values of soil layer A of Guizhou Province. ② The order of average individual Pi from small to large is presented as: Cu(0.20) < Pb(0.22) < Ni(0.26) < Hg(0.27) < Zn(0.31) < Cr(0.44) < As(0.50) < Cd(1.70), and the mean Pi of Cd and As was larger. The mean value of Ig of heavy metal elements from small to large is Cu(-1.24) < Ni(-1.18) < As, Pb(-0.99) < Zn(-0.93) < Cr(-0.71) < Hg(-0.05) < Cd(0.04), and Cd and Hg have higher Ig pollution degree. ③ The correlation analysis has showed that the correlations between As, Hg and the other six heavy metals are weak, which indicate that they have different sources while Cd is strongly correlated with Cr, Ni, Pb, and Zn, indicating that it may have homology. The principal component analysis shows that Cd, Pb, Zn, Cr, and Ni originated from natural and transportation sources, and were mainly controlled by upper Carboniferous Dapu Formation-Huanglong Formation(C1-2d+C2h), Lower Carboniferous(C1j+C1s+C1x+C1dw) and Upper Devonian Gelaohe-Gaopochang Formation(D3g+D3gp) and SN-trending and EW-trending faults. The Cu and Ni come from agricultural factors and natural sources, and the As and Hg come from natural sources and coal-burning sources.
[1] | Acosta J A, Faz A, Martínez-marttínez S, et al. Enrichment of metals in soils subjected to different land uses in typical Mediterranean environment(Murcia City, southeast Spain)[J]. Applied Geochemistry, 2011, 26(3): 405-414. doi: 10.1016/j.apgeochem.2011.01.023 |
[2] | Bhuiyan M A H, Karmaker S C, Doza B M, et al. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods[J]. Chemosphere, 2021, 263(128339): 1-14. |
[3] | Cong J Y, Long H Y, Zhang Y, et al. Ecological environment response of benthic foraminifera to heavy metals and human engineering: A case study from Jiaozhou Bay, China[J]. China Geology, 2022, 5(1): 12-25. |
[4] | Karim Z, Qureshi B A, Mumtaz M, et al. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis[J]. Ecological Indicators, 2014, 42: 20-31. doi: 10.1016/j.ecolind.2013.07.020 |
[5] | Li G, Sun G X, Ren Y, et al. Urban soil and human health, a review[J]. European Journal of Soil Science, 2018, 69: 196-215. doi: 10.1111/ejss.12518 |
[6] | Nanos N, Rodr ĺ guez Martin J A. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin(Spain)[J]. Geoderma, 2012, 189/190: 554-562. doi: 10.1016/j.geoderma.2012.06.006 |
[7] | Nemerow N L. Scientific stream pollution analysis[M]. New York: McGraw-Hill Companies, 1974. |
[8] | Zou J Y, Song Z F, Cai K. Source apportionment of topsoil heavy metals and associated health and ecological risk assessments in a typical Hazy City of the North China Plain[J]. Sustainability, 2021, 13(10046): 1-14. |
[9] | 鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(6): 1625-1636. |
[10] | 邓良基, 凌静, 张世熔, 等. 四川旱耕地生产、生态问题及水土流失综合治理研究[J]. 水土保持学报, 2002, 16(2): 8-11. |
[11] | 董秀茹, 刘浩洋, 刘洪彬. 基于耕地资源质量分类的辽宁省耕地土壤条件及空间分布特征分析[J]. 土壤通报, 2021, 52(5): 1020-1027. |
[12] | 杜梅, 张强英, 任培, 等. 西藏年楚河流域农用地土壤重金属分布与生态风险评价[J]. 环境工程技术学报, 2022, 12(5): 1618-1625. |
[13] | 范云飞, 杨茗钛, 金来福, 等. 贵州省惠水县涟江大坝耕地质量现状及开发利用建议[J]. 贵州地质, 2020, 37(4): 490-496. |
[14] | 冯志刚, 刘威, 张兰英, 等. 贫Cd碳酸盐岩发育的土壤Cd的富集与超常富集现象-以贵州岩溶区为例[J]. 地质通报, 2022, 41(4): 533-544. |
[15] | 顾思博, 周金龙, 曾妍妍, 等. 新疆民丰县农田土壤重金属污染特征与生态风险评价[J]. 干旱区资源与环境, 2019, 33(12): 90-95. |
[16] | 贵州省地质调查院. 中国区域地质志: 贵州志[M]. 北京: 地质出版社, 2017: 1-592. |
[17] | 贵州省有色金属和核工业地质勘查局, 核资源地质调查院. 贵州省惠水县耕地质量地球化学调查评价报告[R]. 2019. |
[18] | 国家环境保护局. 中国土壤环境背景值[M]. 北京: 中国环境科学出版社, 1990: 330-369. |
[19] | 胡明. 大荔县农田土壤重金属分布特征与污染评价[J]. 干旱区资源与环境, 2014, 28(1): 79-84. |
[20] | 黄勇, 段续川, 袁国礼, 等. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 2022, 36(2): 634-644. |
[21] | 李鹏, 张惠娟, 徐莉, 等. 麦玉轮作区农田土壤重金属调查及评价[J]. 农业环境科学学报, 2022, 41(1): 46-54. |
[22] | 李伟, 高海涛, 张娜, 等. 拉萨市城区土壤重金属分布特征及生态风险评价[J]. 环境工程技术学报, 2022, 12(3): 869-877. |
[23] | 梁立成, 余树全, 张超, 等. 浙江省永康市城区土壤重金属空间分布及潜在生态风险评价[J]. 浙江农林大学学报, 2017, 34(6): 972-982. |
[24] | 廖启林, 华明, 金洋, 等. 江苏省土壤重金属分布特征与污染源初步研究[J]. 中国地质, 2009, 36(5): 1163-1174. |
[25] | 刘娟, 张乃明, 于鸿, 等. 沘江两岸耕地土壤重金属径流迁移模拟研究[J]. 安全与环境学报, 2021, 21(4): 1823-1831. |
[26] | 骆珊, 张德明, 卢定彪, 等. 乌蒙山区毕节市耕地土壤微量元素丰缺评价及其影响因素[J]. 地质通报, 2021, 40(9): 1570-1583. |
[27] | 吕柏楠, 王超, 师华定, 等. 基于受体模型与地统计的耕地土壤重金属污染源解析[J]. 环境科学研究. 2021, 34(12): 2962-2969. |
[28] | 生态环境部, 中华人民共和国国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15618—2018)[S]. 2018. |
[29] | 田威, 李娜, 倪才英, 等. 江西省稻渔系统中土壤和稻谷重金属污染特征及健康风险评价[J]. 生态毒理学报, 2021, 16(3): 331-339. |
[30] | 邬光海, 王晨昇, 陈鸿汉. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 2020, 47(6): 1838-1852. |
[31] | 息朝庄, 张鹏飞, 吴林锋, 等. 土壤重金属污染现状调查与评价: 以贵州省惠水县涟江高效农业园区为例[J]. 湖南城市学院学报(自然科学版), 2022, 31(4): 51-56. |
[32] | 息朝庄, 吴林锋, 张鹏飞, 等. 贵州省惠水土壤-灌溉水-雨水-大气降尘中Cd、As等微量元素特征及来源讨论[J]. 中国地质, 2023, 50(1): 192-205. |
[33] | 谢国雄, 应金耀, 章明奎. 大气沉降与施肥方式对梨园重金属平衡的影响[J]. 中国农学通报, 2019, 35(16): 88-94. |
[34] | 叶嘉敏, 余厚平, 简敏菲, 等. 鄱阳湖流域农田重金属污染的生态风险评估[J]. 江西师范大学学报: 自然科学版, 2016, 40(4): 429-436. |
[35] | 叶霖, 刘铁庚. 贵州都匀牛角塘富镉锌矿床中镉的分布及福存状态探讨[J]. 矿物学报, 2001, 21(1): 115-118. |
[36] | 张连科, 李海鹏, 黄学敏, 等. 包头某铝厂周边土壤重金属的空间分布及来源解析[J]. 环境科学, 2016, 37(3): 1139-1146. |
[37] | 中华人民共和国国土资源部. 多目标区域地球化学调查规范(1: 250 000)DZ/T 0258-2014[S]. 2014. |
[38] | 周墨, 唐志敏, 张明, 等. 赣州地区土壤-水稻系统重金属含量特征及健康风险评价[J]. 地质通报, 2021, 40(12): 2149-2158. |
[39] | 周殷竹, 王彪, 刘义, 等. 青海囊谦县城周边农耕区土壤质量地球化学评价及富硒土地利用分区[J]. 干旱区资源与环境, 2020, 34(10): 93-101. |
[40] | 周永超, 孙慧兰, 陈学刚, 等. 绿洲城市伊宁市表层土壤重金属污染特征及其生态风险评价[J]. 干旱区资源与环境, 2019, 33(2): 127-133. |
Soil sampling map of Huishui County
Geological sketch of Huishui County
The correlation map of Devonian to Lower Carboniferous of Gangdu-Longtangshan in Huishui
Photos of soil samples collected from Huishui cultivated land
Element geochemistry maps of Huishui County
Histograms of heavy metal contents in Huishui soil