2023 Vol. 42, No. 7
Article Contents

WANG Lijuan, WANG Zhe, LIU Min, SHEN Jianmei, NIE Zhenlong. 2023. The temperature and precipitation change and its impact on lakes in Badain Jaran Desert over the last 60 years. Geological Bulletin of China, 42(7): 1218-1227. doi: 10.12097/j.issn.1671-2552.2023.07.013
Citation: WANG Lijuan, WANG Zhe, LIU Min, SHEN Jianmei, NIE Zhenlong. 2023. The temperature and precipitation change and its impact on lakes in Badain Jaran Desert over the last 60 years. Geological Bulletin of China, 42(7): 1218-1227. doi: 10.12097/j.issn.1671-2552.2023.07.013

The temperature and precipitation change and its impact on lakes in Badain Jaran Desert over the last 60 years

More Information
  • Based on the long series data of four national meteorological stations during 1960-2017 in the periphery Badain Jaran desert and the short series data of 10 meteorological stations during 2016-2018 in the hinterland of Badain Jaran desert, the unitary linear regression model and Mann-Kendall test were used to systematically analyze the spatio-temporal variation characteristics of temperature and precipitation in the periphery and hinterland of Badain Jaran Desert.Combined with the research results of the project team and predecessors on lake dynamics, the change characteristics are analyzed, and the response relationship between lake changes and climate factors is preliminarily discussed in Badain Jaran Desert.The results showed that the average annual temperature shows a rising trend, and the heating rate increased from south to north, among which the Alxa Right Banner increased significantly at a rate of 0.74℃/10a.The variation trend of precipitation is not significant in the periphery of Badain Jaran Desert; in generalthe, the climate in the southeast edge of the desert has been warm and humid, while that in the northwest edge has been warm and dry in the past 50 years.The annual precipitation and temperature showed sudden changes in the 1970s and 1980s.The sudden changes in precipitation were not obvious, but the sudden changes in air temperature were significant, since then, the climate has become warmer and drier in the periphery Badain Jaran Desert; the characteristics of the monthly climate are basically the same, both of which have the characteristics of simultaneous water and heat, high temperature and rainy in summer, and cold and dry in winter in the periphery and hinterland of Badain Jaran Desert.However, the rainy season is shorter and earlier in the hinterland of Badain Jaran Desert than that in the periphery of Badain Jaran Desert.The lakes have been shrinking in different degrees for many years in the desert area, and the accelerated shrinking of lakes is controlled by the sudden change of local climate warming and drying; the annual water level, water volume peak value of the lake and precipitation peak value are inconsistent, indicating that the precipitation change is not the main control factor of the lake change.

  • 加载中
  • [1] Dong C, Wang N, Chen J, et al. New observational and experimental evidence for the recharge mechanism of the lake group in the Alxa Desert, northcenintral China[J]. Journal of Arid Environments, 2016, 124: 48-61. doi: 10.1016/j.jaridenv.2015.07.008

    CrossRef Google Scholar

    [2] Dong Z B, Qian G Q, Lv P, et al. Investigation of the sand sea with the tallest dunes on Earth: China's Badain Jaran Sand Sea[J]. Earth-Science Reviews, 2013, 120;20-39. doi: 10.1016/j.earscirev.2013.02.003

    CrossRef Google Scholar

    [3] Ma N, Wang N, Zhao L, et al. Observation of mega-dune evaporation after various rain events in the hinterland of Badain Jaran Desert, China[J]. Chinese Science Bulletin, 2014, 59(2): 162-170. doi: 10.1007/s11434-013-0050-3

    CrossRef Google Scholar

    [4] Mutowo G. Remote sensing lake level fluctuations in response to a changing climate[J]. Journal of Water and Climate Change, 2020, 11(1): 30-38. doi: 10.2166/wcc.2018.122

    CrossRef Google Scholar

    [5] Jiao J J, Zhang X T, Wang X S. Satellite-Based Estimates of Groundwater Depletion in the Badain Jaran Desert, China[J]. Scientifc Reports, 2015, 5(1): 8960-8971. doi: 10.1038/srep08960

    CrossRef Google Scholar

    [6] Song S H, Nie Z L, Geng X X, et al. Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River[J]. Journal of Groundwater Science and Engineering, 2023, 11(1): 89-96. doi: 10.26599/JGSE.2023.9280009

    CrossRef Google Scholar

    [7] Sun J, Hu W, Wang N A, et al. Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2018, 10(4): 517-533. doi: 10.1007/s40333-018-0057-3

    CrossRef Google Scholar

    [8] Wang X, Zhou Y. Investigating the mysteries of groundwater in the Badain Jaran Desert, China[J]. Hydrogeology Joumal, 2018, 26: 1-17. doi: 10.1007/s10040-017-1706-x

    CrossRef Google Scholar

    [9] Wen J, Su Z, Zhang T, et al. New evidence for the links between the local water cycle and the underground wet sand layer of amega-dune in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2014, 6(4): 373-377.

    Google Scholar

    [10] Yi G H, Deng W, Li A N, et al. Response of lakes to climate change in Xainza Basin Tibetan Plateau using multi-mission satellite data from 1976 to 2008[J]. Journal of Mountain Science, 2015, 12(3): 604-613. doi: 10.1007/s11629-014-3027-z

    CrossRef Google Scholar

    [11] Zhang X, Wang N A, Xie Z, et al. Water loss due to increasing planted vegetation over the Badain Jaran Desert, China[J]. Remote Sensing, 2018, 10(1): 134. doi: 10.3390/rs10010134

    CrossRef Google Scholar

    [12] 曹乐, 聂振龙, 姜高磊, 等. 基于GF卫星解译巴丹吉林沙漠湖泊水量变化[J]. 人民黄河, 2020, 42(7): 40-45. doi: 10.3969/j.issn.1000-1379.2020.07.009

    CrossRef Google Scholar

    [13] 陈建生, 凡哲超, 汪集砀, 等. 巴丹吉林沙漠湖泊及其下游地下水同位素分析[J]. 地球学报, 2003, 4(6): 497-504. doi: 10.3321/j.issn:1006-3021.2003.06.003

    CrossRef Google Scholar

    [14] 除多, 普穷, 拉巴卓玛, 等. 近40 a西藏羊卓雍错湖泊面积变化遥感分析[J]. 湖泊科学, 2012, 24(3): 494-502. doi: 10.3969/j.issn.1003-5427.2012.03.024

    CrossRef Google Scholar

    [15] 高全洲, 陶贞, 董光荣. 微量元素记录的化学风化和气候变化——以巴丹吉林沙漠查个勒布鲁剖面为例[J]. 中国沙漠, 2001, 21(4): 374-379. doi: 10.3321/j.issn:1000-694X.2001.04.010

    CrossRef Google Scholar

    [16] 贺鹏, 童立强, 郭兆成, 等. 基于遥感长时间序列下巴丹吉林沙漠湖泊演化分裂特征分析[J]. 科学技术与工程, 2017, 17(27): 122—126 doi: 10.3969/j.issn.1671-1815.2017.27.019

    CrossRef Google Scholar

    [17] 姜宝福, 张仁勇, 衣学军, 等. 胶东半岛湖泊面积对气候变化的响应[J]. 地球环境学报, 2020, 11(4): 401-411.

    Google Scholar

    [18] 金可, 张乾柱, 卢阳, 等. 巴丹吉林沙漠湖泊群水体氢氧同位素和水化学特征[J]. 人民长江, 2022, 53(4): 65-72.

    Google Scholar

    [19] 金晓媚, 高萌萌. 巴丹吉林沙漠湖泊遥感信息提取及动态变化趋势[J]. 科技导报, 2014, 32(8): 15-21.

    Google Scholar

    [20] 来婷婷, 王乃昂, 黄银州, 等. 2002年腾格里沙漠湖泊季节变化研究[J]. 湖泊科学, 2012, 24(6): 957-964. doi: 10.3969/j.issn.1003-5427.2012.06.020

    CrossRef Google Scholar

    [21] 刘世祥, 张杰, 赵建华. 甘肃河西地区近五十年气候突变分析[C]//第二届干旱气候变化与可持续发展国际学术探讨会论文集, 2007, 22(11): 66-72.

    Google Scholar

    [22] 李万元, 吕世华, 董治宝, 等. 巴丹吉林沙漠周边地区降水量的时空变化特征[J]. 中国沙漠, 2015, 35(1): 94-105.

    Google Scholar

    [23] 李燕. 巴丹吉林镇近58年温度变化特征分析[J]. 三农论坛, 2019, 12(3): 15.

    Google Scholar

    [24] 马金珠, 陈发虎, 赵华. 1000年以来巴丹吉林沙漠地下水补给与气候变化的包气带地球化学记录[J]. 科学通报, 2004, 49(4): 22-26.

    Google Scholar

    [25] 马宁, 王乃昂, 李卓仑, 等. 1960—2009年巴丹吉林沙漠南北缘气候变化分析[J]. 干旱区研究, 2011a, 28(2): 242-250.

    Google Scholar

    [26] 马宁, 王乃昂, 朱金峰, 等. 巴丹吉林沙漠周边地区近50 a来气候变化特征[J]. 中国沙漠, 2011b, 3l(6): 1541-1547.

    Google Scholar

    [27] 宁文晓, 刘旭阳, 王振亭. 巴丹吉林沙漠温度和降水特征及空间分层异质性[J]. 中国科学院大学学报, 2021, 38(1): 103-113.

    Google Scholar

    [28] 牛震敏, 王乃昂, 温鹏辉, 等. 巴丹吉林沙漠湖泊对浅层沙含水量的影响[J]. 中国沙漠, 2022, 42(2): 142-152.

    Google Scholar

    [29] 邵天杰, 赵景波, 董志宝. 巴丹吉林沙漠湖泊及地下水化学特征[J]. 地理学报, 2011, 66(5): 662-673.

    Google Scholar

    [30] 苏俊礼. 巴丹吉林沙漠和腾格里沙漠降水特征研究[D]. 兰州大学硕士学位论文, 2016.

    Google Scholar

    [31] 王乃昂, 宁凯, 李卓仑, 等. 巴丹吉林沙漠全新世的高湖面与泛湖期[J]. 中国科学: 地球科学, 2016, 46(8): 1106-1115.

    Google Scholar

    [32] 杨小平. 近3万年来巴丹吉林沙漠的景观发育与雨量变化[J]. 科学通报, 2000, 45(4): 428-434.

    Google Scholar

    [33] 杨艺, 李保生, 李云卓, 等. 巴丹吉林沙漠查格勒布剖面微量元素反映的150 ka BP以来的气候变化[J]. 中国沙漠, 2007, 27(1): 1-8.

    Google Scholar

    [34] 熊波, 陈学华, 宋孟强, 等. 基于RS和GIS的沙漠湖泊动态变化研究——以巴丹吉林为例[J]. 干旱区资源与环境, 2009, 23(8): 91-98.

    Google Scholar

    [35] 于欣冉. 巴丹吉林沙漠湖泊区水位动态特征及补给来源研究[D]. 兰州大学硕士学位论文, 2020.

    Google Scholar

    [36] 闫立娟, 郑绵平, 魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 2016, 23(4): 310-323.

    Google Scholar

    [37] 张虎才, 明庆忠. 中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形成[J]. 地球科学进展, 2006, 21(5): 532-538.

    Google Scholar

    [38] 张克存, 姚正毅, 安志山, 等. 巴丹吉林沙漠及其毗邻地区降水特征及风沙环境分析[J]. 中国沙漠, 2012, 32(6): 1507-1511.

    Google Scholar

    [39] 张毅, 孔祥德, 邓宏兵, 等. 近百年湖北省湖泊演变特征研究[J]. 湿地科学, 2010, 8(1): 15-20.

    Google Scholar

    [40] 张永香, 於琍, 伊红. 巴丹吉林沙漠南缘191a来年降水量重建及初步分析[J]. 沙漠与绿洲气象, 2015, 9(1): 12-16.

    Google Scholar

    [41] 张振瑜, 王乃昂, 马宁, 等. 近40年巴丹吉林沙漠腹地湖泊面积变化及其影响因素[J]. 中国沙漠, 2012, 32(6): 1743-1750.

    Google Scholar

    [42] 赵景波, 马延东, 罗小庆, 等. 巴丹吉林沙漠沙山表层径流的发现机器指示意义[J]. 地理学报, 2017, 47(4): 46 -472.

    Google Scholar

    [43] 朱金峰, 王乃昂, 陈红宝, 等. 基于遥感的巴丹吉林沙漠范围与面积分析[J]. 地理科学进展, 2010, 29(9): 1087-1094.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(5)

Article Metrics

Article views(2205) PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint