2023 Vol. 42, No. 6
Article Contents

LI Kangning, ZHANG Jiangsu, XU Jin, LI Hongrui, ZHANG Zhiping, JIA Ruya, ZHANG Shizhen. 2023. Fluid inclusions and H-O-S-Pb isotopic characteristics of the Jiagantan gold deposit in Gannan, West Qinling. Geological Bulletin of China, 42(6): 941-952. doi: 10.12097/j.issn.1671-2552.2023.06.007
Citation: LI Kangning, ZHANG Jiangsu, XU Jin, LI Hongrui, ZHANG Zhiping, JIA Ruya, ZHANG Shizhen. 2023. Fluid inclusions and H-O-S-Pb isotopic characteristics of the Jiagantan gold deposit in Gannan, West Qinling. Geological Bulletin of China, 42(6): 941-952. doi: 10.12097/j.issn.1671-2552.2023.06.007

Fluid inclusions and H-O-S-Pb isotopic characteristics of the Jiagantan gold deposit in Gannan, West Qinling

  • Jiagantan gold deposit is the largest gold deposit discovered in Xiahe-Hezuo area of West Qinling in recent years. The gold ore bodies occur in the fine clastic rocks of the Middle and Upper Triassic. The gold ore body occurs in the Middle and Upper Triassic fine clastic rocks. The occurrence of the ore bodies is strictly controlled by the NW thrust faults and its secondary structure, and they are distributed in echelon and pinnate forms, and the ore bodies are in vein, plate and bifurcated forms. Main mineral assemblages in the main ore-forming stage of the hydrothermal stage are quartz-pyrite -arsenite -stibnite -natural gold. In order to identify the source of ore forming materials and analyze the genesis of the deposit, a systematic fluid inclusion and H-O-S-Pb stable isotopic testing analysis was conducted based on the geological survey of the deposit. The quartz inclusion type in the main mineralization stage of the Jiagantan gold deposit is gas-liquid two-phase inclusion, and liquid-rich two-phase inclusions are the most common. The average temperature of ore-forming fluid is 248.67℃, and the average salinity is 3.78% NaCl, which is characterized by low temperature and low salinity. On the δD - δ18OH2O diagram, the samples are close to the primary water range of the primary magma and mantle. The δ34S value of sulfide (-13.4‰~-7.5‰) is characterized by obvious negative value and narrow range of variation. The Pb isotopic compositions of pyrite and arsenopyrite are similar. The lead is mainly from orogenic belt, and some of the lead from upper crust and mantle is added. The genetic type of the Jiagantan gold deposit is a wide-range low-temperature hydrothermal gold deposit far away from the ore-forming geological bodies. Its formation is closely related to the deep magmatism produced by the subduction of the oceanic crust in the Indosinian period.

  • 加载中
  • [1] Ahmad S N, Rose A W. Fluid inclusionsin Porphyry and skarn ore at Santa Rita[J]. Economic Geology, 1980, 75: 299-250.

    Google Scholar

    [2] Clayton R N. Oxygen Isotope Exchange between Quartz and Water[J]. Journal of Geophysical Research, 1972, 77: 3057. doi: 10.1029/JB077i017p03057

    CrossRef Google Scholar

    [3] Deng J, Wang Q F. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. doi: 10.1016/j.gr.2015.10.003

    CrossRef Google Scholar

    [4] Doe B R, Zartman R E. Plumbo tectonics I. The Phanerozoic[C]//Barnes H L. Geochemistry ore deposites(2nd Ed). New York: Wiley Interscience, 1979: 22-70.

    Google Scholar

    [5] Goldfarb R J, Qiu K F, Deng J, et al. Orogenic gold deposits of China[J]: Society of Economic Geologists Special Publication, 2019, 22: 263-324.

    Google Scholar

    [6] Jin X Y, Li J W, Hofstra A H, et al. Magmatic-hydrothermal origin of the early Triassic Laodou lode gold deposit in the Xiahe-Hezuo district, West Qinling orogen, China: implications for gold metallogeny[J]. Mineralium Deposita, 2017, 52: 883-902. doi: 10.1007/s00126-016-0710-8

    CrossRef Google Scholar

    [7] Liu J J, Liu C H, Carranza E J M, et al. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China[J]. Journal of Asian Earth Sciences, 2015, 103: 40-69. doi: 10.1016/j.jseaes.2014.11.012

    CrossRef Google Scholar

    [8] Li X W, Mo X X, Yu X H, et al. U-Pb zircon geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications? [J]. Lithos, 2013, 172: 158-174.

    Google Scholar

    [9] Mao J W, Qiu Y M, Goldfarb R J, et al. Geology, distribution and classification of gold deposits in the western Qinling belt, central China[J]. Mineralium Deposita, 2002, 37: 352-377. doi: 10.1007/s00126-001-0249-0

    CrossRef Google Scholar

    [10] Meng Q R, Wang E, Hu J M. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block[J]. Geological Society of America Bulletin, 2005, 117(3/4): 396-410.

    Google Scholar

    [11] Muntean J L, Cline J S, Simon A C, et al. Magmatic-hydrothermal origin of Nevada′s Carlin-type gold deposits[J]. Nature Geoscience, 2011, 4 (2): 122-127. doi: 10.1038/ngeo1064

    CrossRef Google Scholar

    [12] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551

    CrossRef Google Scholar

    [13] Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1): 491-559.

    Google Scholar

    [14] Ohmoto H, Rye R. Isotopes of sulfur and carbon[C]//Geochemistry of hydrothermal ore deposits. 1979: 509-567.

    Google Scholar

    [15] Potter R W I, Clynne M A, Brown D L. Freezing point depression of aqueous sodium chloride solutions[J]. Economic Geology, 1978, 73: 284-285. doi: 10.2113/gsecongeo.73.2.284

    CrossRef Google Scholar

    [16] Qiu K F, Yu H C, Deng J, et al. The giant Zaozigou orogenic Au-Sb deposit in West Qinling, China: Magmatic or metamorphic origin? [J]. Mineralium Deposita, 2020, 55(2): 345-362. doi: 10.1007/s00126-019-00937-w

    CrossRef Google Scholar

    [17] Sui J X, Li J W, Wen G, et al. The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China implications for an intrusion-related gold system[J]. Ore Geology Reviews, 2017, 80: 1230-1244. doi: 10.1016/j.oregeorev.2016.09.018

    CrossRef Google Scholar

    [18] Sui J X, Li J W, Jin X Y, et al. 40Ar-39Ar and U-Pb constraints on the age of the Zaozigou gold deposit, Xiahe-Hezuo district, West Qinling orogen, China: relation to early Triassic reduced intrusions emplaced during slab rollback[J]. Ore Geology Reviews, 2018, 101: 885-899. doi: 10.1016/j.oregeorev.2018.08.014

    CrossRef Google Scholar

    [19] Yu H C, Qiu K F, Sai S X, et al. Paleo-Tethys Late Triassic orogenic gold mineralization recorded by the Yidi'nan gold deposit, West Qinling, China[J]. Ore Geology Reviews, 2020, 116: 103-211.

    Google Scholar

    [20] Yu H C, QiuK F, Nassif M T, et al. Early orogenic gold mineralization event in the West Qinling related to closure of the Paleo-Tethys Ocean - Constraints from the Ludousou gold deposit, central China[J]. Ore Geology Reviews, 2020, 117: 103-217.

    Google Scholar

    [21] Zhang H F, Jin L L, Zhang L, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity[J]. Science in China(Series D: Earth Sciences), 2007, 50(2): 184-196. doi: 10.1007/s11430-007-2015-3

    CrossRef Google Scholar

    [22] Zartman R E, Doe B R. Plumbo tectonics-the model[J]. Tectonophysics, 1981, 75(1/2): 135-162.

    Google Scholar

    [23] 白云, 李鸿睿, 史文全, 等. 甘肃加甘滩超大型金矿床矿化富集规律及控矿因素[J]. 金属矿山, 2017, 192(6): 123-130.

    Google Scholar

    [24] 代文军, 史文全, 李鸿睿, 等. 加甘滩金矿床地质特征及矿床成因初探[J]. 黄金, 2016, 383(1): 18-22.

    Google Scholar

    [25] 陈衍景, 张静, 张复新, 等. 西秦岭地区卡林—类卡林型金矿床及其成矿时间、构造背景和模式[J]. 地质论评, 2004, 50(2): 134-152.

    Google Scholar

    [26] 陈衍景, 倪培, 范宏瑞, 等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9): 2085-2108.

    Google Scholar

    [27] 靳晓野. 西秦岭夏河—合作地区老豆金矿矿床成因的地球化学和同位素年代学制约[D]. 武汉: 中国地质大学硕士学位论文, 2013: 1-147.

    Google Scholar

    [28] 李康宁, 李鸿睿, 刘伯崇, 等. 西秦岭TTG质脉岩地球化学特征及其与金矿化的关系[J]. 科学技术与工程, 2019, 19(12): 52-62.

    Google Scholar

    [29] 李康宁, 刘伯崇, 狄永军. 三叠纪西秦岭西北部洋俯冲的记录: 来自镁安山岩/高镁安山岩的证据[J]. 中国地质, 2020a, 47(3): 709-724.

    Google Scholar

    [30] 李康宁, 贾儒雅, 李鸿睿, 等. 西秦岭甘肃夏河—合作地区与中酸性侵入岩有关的金铜多金属成矿系统及找矿预测[J]. 地质通报, 2020b, 50(8): 1191-1203.

    Google Scholar

    [31] 刘伯崇, 李康宁, 史海龙, 等. 西秦岭甘青交界一带晚三叠世火山岩岩石成因及构造指示意义[J]. 现代地质, 2018, 32(4): 704-717.

    Google Scholar

    [32] 邵洁莲. 金矿找矿矿物学[M]. 武汉: 中国地质大学出版社, 1988: 58-66.

    Google Scholar

    [33] 田向盛, 第鹏飞, 刘东晓, 等. 甘肃加甘滩金矿床金的赋存状态研究[J]. 黄金科学技术, 2014, 24(3): 40-51.

    Google Scholar

    [34] 田向盛, 王建飞, 赵志成, 等. 甘肃加甘滩金矿床地质特征及找矿标志[J]. 甘肃地质, 2016, 25(1): 29-35.

    Google Scholar

    [35] 杨学明, 杨晓勇, 陈双喜. 岩石地球化学[M]. 合肥: 中国科学技术大学出版社: 2000: 1-275.

    Google Scholar

    [36] 叶天竺, 韦昌山, 王玉往, 等. 勘查区找矿预测理论与方法(各论)[M]. 北京: 地质出版社, 2017: 481-520.

    Google Scholar

    [37] 张江苏, 袁秀茹. 甘肃省夏河县加甘滩金矿床地质特征及找矿前景分析[J]. 甘肃科技, 2007, 23(8): 69-71.

    Google Scholar

    [38] 朱炳泉. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 1998: 1-67.

    Google Scholar

    甘肃省地质矿产勘查开发局第三地质矿产勘查院. 甘肃省夏河县西科—塔哇一带1: 5万矿产远景调查成果报告[R]. 2022.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1660) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint