2023 Vol. 42, No. 6
Article Contents

WANG Jianqing, LIU Gaojie, DONG Shuai, LIU Yang, LIU Jianquan, WANG Pengfei, WANG Jikun, LIU Zhanpeng, HONG Wenwu, LI Songbin, XU Rulei, LIU Junyuan, ZHAO Peng, SUN Peizhou. 2023. The 'trinity' prospecting prediction geological model of the Zhangmajing uranium molybdenum deposit in Guyuan County, Hebei Province. Geological Bulletin of China, 42(6): 931-940. doi: 10.12097/j.issn.1671-2552.2023.06.006
Citation: WANG Jianqing, LIU Gaojie, DONG Shuai, LIU Yang, LIU Jianquan, WANG Pengfei, WANG Jikun, LIU Zhanpeng, HONG Wenwu, LI Songbin, XU Rulei, LIU Junyuan, ZHAO Peng, SUN Peizhou. 2023. The "trinity" prospecting prediction geological model of the Zhangmajing uranium molybdenum deposit in Guyuan County, Hebei Province. Geological Bulletin of China, 42(6): 931-940. doi: 10.12097/j.issn.1671-2552.2023.06.006

The "trinity" prospecting prediction geological model of the Zhangmajing uranium molybdenum deposit in Guyuan County, Hebei Province

More Information
  • The Zhangmajing U-Mo deposit, located in the Guyuan-Hongshanzi uranium mineralization belt, is a typical sub-volcanic hydrothermal deposit. Based on the summary and study of metallogenic geological body, metallogenic structure and metallogenic structural planes, alteration characteristics, fluid inclusion and isotope characteristics of the deposit, this paper constructs a "trinity" prospecting prediction model in the mining area. The model points out that under the condition of fault activity in the Early Cretaceous, the mantle-derived metallogenic thermal fluid mixed with atmospheric precipitation rose, activated the elements such as uranium and molybdenum in the old basement rock mass and Mesozoic acid rock, and metasomatized and precipitated to form disseminated low-grade mineralization. In the Himalayan period, the ore-forming hydrothermal fluid migrated and precipitated along the structural fracture zone in the upper and lower walls of the rock mass, forming vein-type U-Mo mineralization, Vein-type mineralization and disseminated mineralization are superimposed to form Zhangmajing uranium rich ore body. The establishment of the model lays a solid foundation for the breakthrough of ore prospecting in the metallogenic belt.

  • 加载中
  • [1] Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75: 135-162. doi: 10.1016/0040-1951(81)90213-4

    CrossRef Google Scholar

    [2] 陈东欢, 范洪海, 王风岗, 等. 沽源-红山子铀多金属成矿带多元同位素示踪[C]//中国核学会2011年学术年会论文集第1册(铀矿地质分卷). 中国核学会, 2011: 7.

    Google Scholar

    [3] 陈东欢, 范洪海, 王凤岗, 等. 沽源-红山子地区火山岩型铀矿床蚀变特征[J]. 铀矿地质, 2011, 27(2): 88-94. doi: 10.3969/j.issn.1000-0658.2011.02.005

    CrossRef Google Scholar

    [4] 陈国能, 邱惟, 卢映新, 等. 陆壳多次重熔与火山岩型铀-多金属矿田的形成[J]. 地学前缘, 2015, 22(4): 22-28.

    Google Scholar

    [5] 杜俐, 沈光银, 林银山. 华北地台北缘火山岩型铀钼矿床找矿模型研究[J]. 地质找矿论丛, 2012, 27(4): 458-462. doi: 10.6053/j.issn.1001-1412.2012.04.010

    CrossRef Google Scholar

    [6] 方茂龙, 薛伟, 张玉双, 等. 河北沽源460铀矿床主矿段矿体空间定位机制[J]. 矿床地质, 2018, 37(1): 27-36.

    Google Scholar

    [7] 郭鸿军, 马申坤. 河北省沽源县张麻井铀钼矿控矿因素分析及外围找矿前景探讨[J]. 地质调查与研究, 2009, 32(3): 210-215.

    Google Scholar

    [8] 黄志新, 李子颖, 焦永玲, 等. 冀北铀多金属成矿作用过程与成矿模式[J]. 矿物学报, 2015, 35(S1): 300-301.

    Google Scholar

    [9] 姜山, 潘家永, 段力, 等. 燕山西段蔡家营-御道口断裂带的地质特征及其对铀成矿的控制作用[J]. 东华理工大学学报(自然科学版), 2011, 34(4): 301-307.

    Google Scholar

    [10] 李耀菘. 460铀矿床主要矿化期的同位素年龄[J]. 铀矿地质, 1989, (4): 203-208.

    Google Scholar

    [11] 李耀菘. 沽源火山岩盆地的U-Pb同位素体系演化与铀成矿作用[J]. 地球化学, 1990, (4): 286-295.

    Google Scholar

    [12] 路远发. Geokit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464.

    Google Scholar

    [13] 刘学武, 王胜权, 樊秉鸿. 河北沽源460铀钼矿床成因探讨[J]. 地质找矿论丛, 2010, 25(1): 36-42.

    Google Scholar

    [14] 罗毅. 460火山岩型铀-钼矿床的构造-矿化分带及成矿模式研究[J]. 铀矿地质, 1993, (1): 23-28.

    Google Scholar

    [15] 孟艳宁, 范洪海, 陈东欢, 等. 河北省沽源地区460矿床的铀钼矿物学特征研究[J]. 东华理工大学学报(自然科学版), 2015, 38(4): 335-343.

    Google Scholar

    [16] 芮国桢. 460大型铀-钼矿床成矿地质特征及成因探讨[J]. 世界核地质科学, 2010, 27(3): 149-154, 163.

    Google Scholar

    [17] 沈光银. 沽源火山盆地铀钼多金属成矿地质条件分析及找矿方向[J]. 矿产与地质, 2008, 22(6): 510-516.

    Google Scholar

    [18] 沈阳, 高帮飞, 陈志广. 中非铜矿带绿纱铜钴矿床硫、铅同位素特征及地质意义[J]. 矿物岩石, 2015, 35(4): 97-105.

    Google Scholar

    [19] 王宝德, 牛树银, 孙爱群, 等. 冀北地区中生代金银多金属矿床成矿物质来源和深部过程探讨[J]. 地质学报, 2003, 77(3): 379-386.

    Google Scholar

    [20] 王建青, 刘高杰, 于达, 等. 河北张麻井铀钼矿床成矿流体特征——来自流体包裹体及氢氧同位素的证据[J]. 铀矿地质, 2022a, 38(1): 38-45.

    Google Scholar

    [21] 王建青, 王纪昆, 刘建权, 等. 冀北沽源地区铀钼矿成矿规律及找矿潜力[J]. 现代矿业, 2022b, 38(3): 40-45.

    Google Scholar

    [22] 王瑞军, 汪冰, 张恩, 等. 沽源火山盆地南缘三山铀矿点成矿地质特征及成矿模式研究[C]//中国核学会2017年学术年会论文集第1册(铀矿地质分卷(上)). 中国核学会, 2017: 6.

    Google Scholar

    [23] 巫建华, 丁辉, 牛子良, 等. 河北沽源张麻井铀-钼矿床围岩SHRIMP锆石U-Pb定年及其地质意义[J]. 矿床地质, 2015, 34(4): 757-768.

    Google Scholar

    [24] 吴开兴, 胡瑞忠, 毕献武, 等. 矿石铅同位素示踪成矿物质来源综述[J]. 地质地球化学, 2002, (3): 73-81.

    Google Scholar

    [25] 夏毓亮, 林锦荣, 朱杰辰, 等. 沽源-多伦盆地火山岩类和花岗岩类同位素地质年代学及铀成矿条件研究[J]. 铀矿地质, 1998, (5): 274-281.

    Google Scholar

    [26] 许洪才, 申宗义, 李新华, 等. 河北省沽源地区矿产成矿规律与找矿方向[J]. 地质调查与研究, 2016, 39(4): 260-272.

    Google Scholar

    [27] 薛伟, 彭云彪, 李小伟, 等. 沽源-红山子铀成矿带核桃坝铀矿床矿相学和成矿年代学研究[J]. 岩石学报, 2019, 35(4): 1085-1094.

    Google Scholar

    [28] 薛伟. 沽源—红山子铀成矿带中段铀矿地质特征与成矿规律研究[D]. 中国地质大学(武汉)博士学位论文, 2019.

    Google Scholar

    [29] 张明林, 车永飞, 朱鹏飞, 等. 河北沽源张麻井火山岩型铀矿床成矿模式[J]. 矿床地质, 2012, 31(S1): 239-240.

    Google Scholar

    [30] 张振强. 460铀矿床地球化学特征及成矿机理探讨[J]. 辽宁地质, 2001, (1): 28-33.

    Google Scholar

    [31] 朱斌, 黄志新, 李子颖, 等. 河北沽源张麻井铀钼矿床He-Ar同位素示踪[J]. 铀矿地质, 2019, 35(5): 257-264.

    Google Scholar

    王建青, 于达, 张翔君, 等. 河北省小河子矿集区深部找矿预测课题成果报告[R]. 天津华北地质勘查总院, 2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1334) PDF downloads(156) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint