2022 Vol. 41, No. 2-3
Article Contents

SHEN Hongfei, LI Lixing, LI Houmin, LI Xiaosai, SUN Xinyu, WEN Yizhuo, LI Wenchao, MENG Yuhong. Control of the large-sized Mesozoic W-Sn mineralization in southern Hunan: Insights from zircon geochronology and trace element geochemistry[J]. Geological Bulletin of China, 2022, 41(2-3): 461-485. doi: 10.12097/j.issn.1671-2552.2022.2-3.024
Citation: SHEN Hongfei, LI Lixing, LI Houmin, LI Xiaosai, SUN Xinyu, WEN Yizhuo, LI Wenchao, MENG Yuhong. Control of the large-sized Mesozoic W-Sn mineralization in southern Hunan: Insights from zircon geochronology and trace element geochemistry[J]. Geological Bulletin of China, 2022, 41(2-3): 461-485. doi: 10.12097/j.issn.1671-2552.2022.2-3.024

Control of the large-sized Mesozoic W-Sn mineralization in southern Hunan: Insights from zircon geochronology and trace element geochemistry

More Information
  • Based on detrital zircons from Sinian, Devonian, Carboniferous and Cretaceous clastic rocks and magmatic zircons from Indosinian-Yanshanian granites in southern Hunan, the control of Mesozoic W-Sn large-sized mineralization in southern Hunan are discussed through zircon U-Pb geochronology and trace element geochemistry.Zircon geochronology shows that the detrital zircon age is lacking of the peak at 2.0 Ga, indicating that the provenance of the Sinian and Late Paleozoic sedimentary basins in southern Hunan is related to the Cathaysia block, but not to the Yangtze block, which can represent the record of the Cathaysia block magmatic activity in the study area.The age spectrum peaks of detrital zircons records six periods of pre-Mesozoic tectonic-magmatic events of the Cathaysia Block, including 2.5 Ga, 1.3~1.1 Ga, 950 Ma, 800 Ma, 650 Ma, and 430 Ma, respectively.These periods correspond to the early formation of Precambrian continental crust, Grenville collision orogeny event, and the amalgamation and splitting of the Rodinia supercontinent.The zircon δEu, LREE/HREE, Y/Ho, and Nb/Ta values of the same tectonic-magmatic event in South Hunan vary greatly. With the age getting younger, the LREE /HREE and Nb/Ta values tend to be larger, suggesting that the magma differentiation degree has nothing to do with age.The zircon ∑REE, Y, Th, U, Nb and Ta contents as well as LREE/HREE and Nb/Ta values increase with ages becoming younger, suggesting that the compositional maturity of source area increases accordingly.The results indicate that the scale of tungsten-tin mineralization in southern Hunan increases with times and reaches its peak in Mesozoic, which is closely related to the increasing crustal maturity.The zircon trace elements can be used as an important index to trace the scale of W-Sn mineralization.

  • 加载中
  • [1] Chen L, Wang Z, Yan Z, et al. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the Neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China[J]. Mineralogy and Petrology, 2018, 112(4) : 437-463. doi: 10.1007/s00710-018-0554-2

    CrossRef Google Scholar

    [2] Xiang L, Wang R, Erdmann Saskia S, et al. Neoproterozoic mineralization in a hydrothermal cassiterite-sulfide deposit at Jiumao, northern Guangxi, South China: Mineral-scale constraints on metal origins and ore-forming processes[J]. Ore Geology Reviews, 2018, 94: 172-192. doi: 10.1016/j.oregeorev.2018.01.013

    CrossRef Google Scholar

    [3] Zhang S, Zhang R, Lu J, et al. Neoproterozoic tin mineralization in South China: geology and cassiterite U-Pb age of the Baotan tin deposit in northern Guangxi[J]. Mineralium Deposita, 2019, 54(8) : 1125-1142. doi: 10.1007/s00126-019-00862-y

    CrossRef Google Scholar

    [4] Li S, Feng Z, Qin Y, et al. The relationship between ductile shear zone and mineralization in the Jiufeng Sn deposit, northern Guangxi, South China: Evidence from structural analysis and cassiterite U-Pb dating[J]. Ore Geology Reviews, 2020, 124: 103655. doi: 10.1016/j.oregeorev.2020.103655

    CrossRef Google Scholar

    [5] 杨振, 王汝成, 张文兰, 等. 桂北牛塘界加里东期花岗岩及其矽卡岩型钨矿成矿作用研究[J]. 中国科学: 地球科学, 2014, 7: 1357-1373.

    Google Scholar

    [6] 陈文迪, 张文兰, 王汝成, 等. 桂北苗儿山—越城岭地区独石岭钨(铜) 矿床研究: 对复式岩体多时代差异性成矿的启示[J]. 中国科学: 地球科学, 2016, 46(12) : 1602-1625.

    Google Scholar

    [7] 豆浩然, 张文兰, 王汝成, 等. 桂北牛塘界加里东期钨矿床年代学、成矿流体性质及其演化[J]. 地质学报, 2018, 92(11) : 2269-2300. doi: 10.3969/j.issn.0001-5717.2018.11.006

    CrossRef Google Scholar

    [8] Du S, Wen H, Qin C, et al. Caledonian ore-forming event in the Laojunshan mining district, SE Yunnan Province, China: In situ LA- MC-ICP-MS U-Pb dating on cassiterite[J]. Geochemical Journal, 2015, 49: 11-22. doi: 10.2343/geochemj.2.0326

    CrossRef Google Scholar

    [9] 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5) : 636-658.

    Google Scholar

    [10] 彭建堂, 胡瑞忠, 袁顺达, 等. 湘南中生代花岗质岩石成岩成矿的时限[J]. 地质论评, 2008, 54(5) : 617-625. doi: 10.3321/j.issn:0371-5736.2008.05.006

    CrossRef Google Scholar

    [11] 蒋少涌, 赵葵东, 姜耀辉, 等. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J]. 高校地质学报, 2008, 14(4) : 496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004

    CrossRef Google Scholar

    [12] 马收先, 李厚民, 孙燕, 等. 湘南地区锡石结晶控制因素——来自阴极发光图像、微量元素和年龄的证据[J]. 地质通报, 2021, 40(10) : 1737-1756.

    Google Scholar

    [13] Li H, Wu J, Evans N J, et al. Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization in South China[J]. Lithos, 2018, 312/313: 1-20. doi: 10.1016/j.lithos.2018.05.001

    CrossRef Google Scholar

    [14] Yuan S, Mao J, Cook N J, et al. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China[J]. Ore Geology Reviews, 2015, 65: 283-293. doi: 10.1016/j.oregeorev.2014.10.006

    CrossRef Google Scholar

    [15] 卢友月, 付建明, 程顺波, 等. 湘南界牌岭锡多金属矿床含矿花岗斑岩SHRIMP锆石U-Pb年代学研究[J]. 华南地质与矿产, 2013, 29(3) : 199-206.

    Google Scholar

    [16] 王艳丽, 彭齐鸣, 祝新友, 等. 湖南界牌岭锡多金属矿地球化学、年代学特征及成矿区带归属[J]. 地质与勘探, 2014, 50(3) : 475-485.

    Google Scholar

    [17] Zhang R, Lu J, Wang R, et al. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China[J]. Ore Geology Reviews, 2015, 65: 1021-1042. doi: 10.1016/j.oregeorev.2014.09.021

    CrossRef Google Scholar

    [18] 蔡明海, 张文兵, 彭振安, 等. 湘南荷花坪锡多金属矿床成矿年代研究[J]. 岩石学报, 2016, 32(7) : 2111-2123.

    Google Scholar

    [19] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143: 602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [20] 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7) : 745-765.

    Google Scholar

    [21] 杨明桂, 黄水保, 楼法生, 等. 中国东南陆区岩石圈结构与大规模成矿作用[J]. 中国地质. 2009, 36(3) : 528-543. doi: 10.3969/j.issn.1000-3657.2009.03.004

    CrossRef Google Scholar

    [22] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10) : 1553-1582.

    Google Scholar

    [23] 赵葵东, 蒋少涌, 姜耀辉, 等. 湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石学报, 2006, 10: 2611-2616.

    Google Scholar

    [24] 袁顺达, 刘晓菲, 王旭东, 等. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究[J]. 岩石学报, 2012, 28(12) : 3787-3797.

    Google Scholar

    [25] Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ red zircon standard by laser ablation[J]. Geochimica et Cosmochimica Acta, 2006, 70(Suppl. 1) : A158.

    Google Scholar

    [26] Sláma J, Košler J, Condon D J, et al. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [27] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4) : 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [28] Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154: 429-437. doi: 10.1007/s00410-007-0201-0

    CrossRef Google Scholar

    [29] Liu X, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4) : 421-468. doi: 10.2475/04.2008.02

    CrossRef Google Scholar

    [30] Wang L, Griffin W L, Yu J, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 2010, 177(1/2) : 131-144.

    Google Scholar

    [31] Yao J, Shu L, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3) : 553-567.

    Google Scholar

    [32] Xu Y, Du Y Cawood P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267/268: 63-72. doi: 10.1016/j.sedgeo.2012.05.009

    CrossRef Google Scholar

    [33] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7) : 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [34] Li X, Li Z, Li W. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis[J]. Gondwana Research, 2014, 25(3) : 1202-1215. doi: 10.1016/j.gr.2014.01.003

    CrossRef Google Scholar

    [35] Yang Z, Jiang S. Detrital zircons in metasedimentary rocks of Mayuan and Mamianshan Group from Cathaysia Block in northwestern Fujian Province, South China: New constraints on their formation ages and paleogeographic implication[J]. Precambrian Research, 2019, 320: 13-30. doi: 10.1016/j.precamres.2018.10.004

    CrossRef Google Scholar

    [36] 王鹏鸣, 于津海, 孙涛, 等. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义[J]. 岩石学报, 2012, 28(12) : 3841-3857.

    Google Scholar

    [37] 王鹏鸣, 于津海, 孙涛, 等. 湘桂震旦—寒武纪沉积岩组成的变化——对华南构造演化的指示[J]. 中国科学: 地球科学, 2013.43(11) : 1893-1906, 1-7.

    Google Scholar

    [38] 张雄, 曾佐勋, 刘伟, 等. 湘南—桂东北地区寒武—奥陶纪沉积岩碎屑锆石U-Pb年代学特征及其地质意义[J]. 中国地质, 2016, 43(1) : 153-173. doi: 10.3969/j.issn.1000-3657.2016.01.012

    CrossRef Google Scholar

    [39] Shu L, Faure M, Yu J, et al. Geochronological and geochemical features of the Cathaysia block (South China) : new evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011, 187: 263-276. doi: 10.1016/j.precamres.2011.03.003

    CrossRef Google Scholar

    [40] 向磊, 舒良树. 华南东段前泥盆纪构造演化: 来自碎屑锆石的证据[J]. 中国科学: 地球科学, 2010, 40(10) : 1377-1388.

    Google Scholar

    [41] Zhang Y, Shu L, Chen X. Study of geochemistry, geochronology and petro-genesis of the Early Paleozoic granitic plutons in the central-southern Jiangxi Province[J]. Science in China (Earth Sciences), 2011, 54(10) : 1492-1510. doi: 10.1007/s11430-011-4249-3

    CrossRef Google Scholar

    [42] 缑雪清, 冯佐海, 肖宇, 等. 桂北龙胜花岗岩体LA-ICP-MS锆石U-Pb年代学研究[J]. 桂林理工大学学报, 2020, 40(3) : 470-479. doi: 10.3969/j.issn.1674-9057.2020.03.002

    CrossRef Google Scholar

    [43] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120: 347-359. doi: 10.1016/0009-2541(94)00145-X

    CrossRef Google Scholar

    [44] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123: 323-333. doi: 10.1007/s004100050159

    CrossRef Google Scholar

    [45] 郭春丽, 曾令森, 高利娥, 等. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究[J]. 地质学报, 2017, 91(8) : 1796-1817. doi: 10.3969/j.issn.0001-5717.2017.08.010

    CrossRef Google Scholar

    [46] 赵振华, 增田彰正, 夏巴尼M B. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 12: 221-233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    CrossRef Google Scholar

    [47] Gelman S E, Deering C D, Bachmann O, et al. Identifying the crystal graveyards remaining after large silicic eruptions[J]. Earth and Planetary Science Letters, 2014, 403: 299-306. doi: 10.1016/j.epsl.2014.07.005

    CrossRef Google Scholar

    [48] 华仁民, 张文兰, 陈培荣, 等. 初论华南加里东花岗岩与大规模成矿作用的关系[J]. 高校地质学报, 2013, 19(1) : 1-11. doi: 10.3969/j.issn.1006-7493.2013.01.003

    CrossRef Google Scholar

    [49] 冯毅, 覃小锋, 王宗起, 等. 桂北一洞锡多金属矿床LA-MC-ICP-MS锡石U-Pb测年及其地质意义[J]. 矿产与地质, 2020, 34(3) : 477-485.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(1840) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint