2022 Vol. 41, No. 2-3
Article Contents

JIA Long, LEI Mingtang, CHENG Xiaojie. High precision detection and evaluation of karst features based on borehole ultrasonic imaging[J]. Geological Bulletin of China, 2022, 41(2-3): 453-460. doi: 10.12097/j.issn.1671-2552.2022.2-3.023
Citation: JIA Long, LEI Mingtang, CHENG Xiaojie. High precision detection and evaluation of karst features based on borehole ultrasonic imaging[J]. Geological Bulletin of China, 2022, 41(2-3): 453-460. doi: 10.12097/j.issn.1671-2552.2022.2-3.023

High precision detection and evaluation of karst features based on borehole ultrasonic imaging

  • Complex karst often restricts human engineering construction.In order to avoid the adverse geological problems related to karst, how to detect and evaluate the karst features more accurately is one of the difficult problems in karst exploration.The borehole ultrasonic imaging technology was utilized to accurately depict the karst phenomenon revealed from borehole, and based on the borehole line karst rate, the concept of 'borehole wall karst rate' was proposed to extend the one-dimensional space expression of karst rate to the two-dimensional space expression, which provided more refined basic data for engineering construction in the karst area.The example shows that the ultrasonic imaging technology could make up for the drilling coring difficulty in karst area, and could display the surface characteristics of borehole wall with high resolution in the whole section, so as to achieve the purpose of detecting karst phenomenon with high precision and evaluating karst characteristics with fine quantitative analysis.The ultrasonic imaging technique to calculate the borehole wall karst rate is not only possible to analyze the variation or stratification of karst development with depth, but also to analyze the characteristics of karst development in different directions of the stratum.

  • 加载中
  • [1] 铁道部第二勘测设计院. 岩溶工程地质[M]. 北京: 中国铁道出版社, 1984: 1-337.

    Google Scholar

    [2] 邹成杰. 水利水电岩溶工程地质[M]. 北京: 水利电力出版社, 1994: 1-385.

    Google Scholar

    [3] 李文莉, 蒋忠诚, 张冉. 中国地质调查局西南岩溶石漠化野外科学观测研究站简介[J]. 中国地质, 2021, 48(1) : 345-346.

    Google Scholar

    [4] 吕金波, 卢耀如, 郑桂森, 等. 北京西山岩溶洞系的形成及其与新构造运动的关系[J]. 地质通报, 2010, 29(4) : 502-509. doi: 10.3969/j.issn.1671-2552.2010.04.003

    CrossRef Google Scholar

    [5] 黄鑫, 许振浩, 林鹏, 等. 隧道突水突泥致灾构造识别方法及其工程应用[J]. 应用基础与工程科学学报, 2020, 28(1) : 103-122.

    Google Scholar

    [6] 郭佳奇, 王光勇, 任连伟. 宜万铁路岩溶地质特征及其发育模式[J]. 中国地质灾害与防治学报, 2013, 24(2) : 72-78.

    Google Scholar

    [7] 宋战平. 隐伏溶洞对隧道围岩-支护结构稳定性的影响研究[J]. 岩石力学与工程学报, 2006, 26(6) : 1296. doi: 10.3321/j.issn:1000-6915.2006.06.032

    CrossRef Google Scholar

    [8] 籍长志. 基于桥基荷载作用下的溶洞顶板稳定性研究[D]. 西南交通大学硕士学位论文, 2010.

    Google Scholar

    [9] 戴自航, 范夏玲, 卢才金. 岩溶区高速公路路堤及溶洞顶板稳定性数值分析[J]. 岩土力学, 2014, 35(S1) : 382-390.

    Google Scholar

    [10] 宋国壮. 高速铁路岩溶地基复合注浆强化理论与路基稳定性研究[D]. 北京交通大学博士学位论文, 2019.

    Google Scholar

    [11] 支兵发. 影响珠江三角洲可持续城市化发展的若干环境地质问题[J]. 地质通报, 2005, 24(6) : 576-581.

    Google Scholar

    [12] 周心经, 郭宇, 郑小战, 等. 广州市白云区夏茅村岩溶地面塌陷特征及致灾因素和风险分析[J]. 中国地质灾害与防治学报, 2021, 32(6) : 63-71.

    Google Scholar

    [13] 韩庆定, 罗锡宜. 广东佛山市高明区李家村岩溶塌陷群成因机理分析[J]. 中国地质灾害与防治学报, 2021, 32(4) : 56-64.

    Google Scholar

    [14] 郭宇, 周心经, 郑小战, 等. 广州夏茅村岩溶地面塌陷成因机理与塌陷过程分析[J]. 中国地质灾害与防治学报, 2020, 31(5) : 54-59.

    Google Scholar

    [15] Lei M, Gao Y, Jiang X, et al. Mechanism Analysis of Sinkhole Formation at Maohe Village, Liuzhou City, Guangxi Province, China[J]. Environmental Earth Sciences, 2016, 75(7) : 1-11.

    Google Scholar

    [16] Gutiérrez F, Parise M, De waele J, et al. A review on natural and human-induced geohazards and impacts in karst[J]. Earth-Science Reviews, 2014, 138(Supplement C) : 61-88.

    Google Scholar

    [17] 张凯, 霍晓龙, 陈寿根, 等. 地下岩溶发育程度评价体系的初步探讨[J]. 西南交通大学学报, 2018, 53(3) : 565-573.

    Google Scholar

    [18] 卢丹美. 广州市金沙洲地区地面塌陷特征及危险性评价[D]. 成都理工大学硕士学位论文, 2013.

    Google Scholar

    [19] 中华人民共和国原城乡建设环境保护部. 建筑地基基础设计规范[S]. 北京: 中国建筑工业出版社, 1991.

    Google Scholar

    [20] 贾龙, 蒙彦, 潘宗源, 等. 钻孔雷达反射成像在岩溶发育场地探测中的应用[J]. 中国岩溶, 2019, 38(1) : 124-129.

    Google Scholar

    [21] 秦秀山, 曹辉. 基于钻孔超声波成像测试技术的岩体完整性分析[J]. 有色金属工程, 2017, 7(1) : 82-86.

    Google Scholar

    [22] 何险高, 王建顺, 高健. 孔内超声波成像技术在地质勘察中的应用[J]. 工程勘察, 2014, 42(10) : 89-94.

    Google Scholar

    [23] 李印, 沈茂丁, 徐华文. 最可靠的非开挖地下岩体结构勘察方法——高精度超声波钻孔成像[J]. 岩土工程技术, 2011, 25(2) : 55-58, 67.

    Google Scholar

    [24] 王锡勇, 苏锐, 陈亮, 等. 基于超声波钻孔电视的深部岩体结构面特征研究[J]. 世界核地质科学, 2014, 31(1) : 39-44, 62.

    Google Scholar

    [25] 王平, 冯兴隆, 蔡永顺, 等. 基于钻孔超声波成像技术的普朗铜矿钻孔节理分布规律研究[J]. 矿冶, 2019, 28(2) : 1-5.

    Google Scholar

    [26] 何险高, 王建顺, 高健. 孔内超声波成像技术在地质勘察中的应用[J]. 工程勘察, 2014, 42(10) : 89-94.

    Google Scholar

    [27] 崔雷. 孔内超声成像在铁路工程勘察中的应用[J]. 工程地球物理学报, 2019, 16(5) : 669-674.

    Google Scholar

    [28] Otsu N. A Thresholding selection method from gray-level histogram[J]. Ieee Trans. Syst. Man. & Cybern, 1979, 9(1) : 62-66.

    Google Scholar

    [29] 丁冬艳, 涂宏庆. 最大类间方差法的激光图像轮廓检测[J]. 激光杂志, 2019, 40(10) : 95-98.

    Google Scholar

    [30] 王璇, 张帆, 程京. 基于改进最大类间方差法的灰度图像分割[J]. 微计算机信息, 2010, 26(35) : 200, 206-207.

    Google Scholar

    [31] TICAGHP 076—2020. 岩溶地面塌陷防治工程勘查规范(试行)[S]. 武汉: 中国地质大学出版社, 2020.

    Google Scholar

    [32] 褚岩. 滑动平均法窗口尺度选择研究[J]. 石化技术, 2017, 24(3) : 148, 151.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1684) PDF downloads(96) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint