2022 Vol. 41, No. 12
Article Contents

ZHANG Jinguo, ZHAO Xilin, LIU Huan, JIANG Yang, XING Guangfu. Geochemical characteristics of Neoproterozoic-Early Paleozoic meta-sedimentary of Longquan Group and implications for tectonic evolution in South China[J]. Geological Bulletin of China, 2022, 41(12): 2202-2223. doi: 10.12097/j.issn.1671-2552.2022.12.012
Citation: ZHANG Jinguo, ZHAO Xilin, LIU Huan, JIANG Yang, XING Guangfu. Geochemical characteristics of Neoproterozoic-Early Paleozoic meta-sedimentary of Longquan Group and implications for tectonic evolution in South China[J]. Geological Bulletin of China, 2022, 41(12): 2202-2223. doi: 10.12097/j.issn.1671-2552.2022.12.012

Geochemical characteristics of Neoproterozoic-Early Paleozoic meta-sedimentary of Longquan Group and implications for tectonic evolution in South China

More Information
  • Cathaysia is an important part of the South China block, and whether its tectonic setting is an old continent or orogeny has been controversial.We dated detrital zircon U-Pb ages of Longquan Group meta-sedimentary rocks from southern Zhejiang Province in northern Cathaysia, analyzed the petrography, geochemistry and original tectonic settings of their protolith.The age spectrum of detrital zircons of these meta-sedimentary rocks shows multiple peaks, including the Pan-Africa and the Grenville peaks, reflecting their affinity with the Gondwana paleocontinent.The maximum sedimentary ages of the four samples are 618 Ma, 620 Ma, 570 Ma and 549 Ma respectively, combined with Caledonian granite intrusion and metamorphism in the region, the protoliths of meta-sedimentary rocks were inferred to be formed in Neoproterozoic to early Paleozoic.According to their petrographic and geochemical characteristics, the protoliths of the meta-sedimentary rocks are graywacke and clay rocks, which belong to flysch-like formation in active continent margin.Longquan Group is constituted by flysch-like matrix and exotic blocks, including meta-basites, siliceous rocks and marbles, formed in different time and different tectonic setting, and the youngest matrix deposited after Late Sinian(570~549 Ma).It is concluded that Longquan Group is Neoproterozoic-early Paleozoic subduction-accretionary complex, which implied that the Cathaysia Block and the Yangtze Block had not collided in this period.

  • 加载中
  • [1] Grabau A W. Stratigraphy of China, Part Ⅰ, Paleozoic and older[M]. Peking: Geological Survey of China, 1924: 1-528.

    Google Scholar

    [2] 水涛, 徐步台, 梁如华, 等. 绍兴-江山古陆对接带[J]. 科学通报, 1986, (6): 444.

    Google Scholar

    [3] 水涛. 中国东南大陆基底构造格局[J]. 中国科学: 化学生物学农学医学地学, 1987, (4): 78-86.

    Google Scholar

    [4] 沈渭洲, 凌洪飞, 李武显, 等. 中国东南部花岗岩类的Nd模式年龄与地壳演化[J]. 中国科学(D辑), 2000, (5): 471-478.

    Google Scholar

    [5] 沈渭洲, 于津海, 赵蕾, 等. 南岭东段后太古宙地层的Sm-Nd同位素特征与地壳演化[J]. 科学通报, 2003, (16): 1740-1745. doi: 10.3321/j.issn:0023-074X.2003.16.005

    CrossRef Google Scholar

    [6] 沈渭洲. 华夏地块基底变质岩同位素年龄数据评述[J]. 高校地质学报, 2006, 12(4): 475-482. doi: 10.3969/j.issn.1006-7493.2006.04.008

    CrossRef Google Scholar

    [7] 于津海, 魏震洋, 王丽娟, 等. 华夏地块: 一个由古老物质组成的年轻陆块[J]. 高校地质学报, 2006, 12(4): 440-447. doi: 10.3969/j.issn.1006-7493.2006.04.004

    CrossRef Google Scholar

    [8] 舒良树, 陈祥云, 楼法生. 华南前侏罗纪构造[J]. 地质学报, 2020, 94(2): 333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001

    CrossRef Google Scholar

    [9] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [10] 舒良树. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 2006, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002

    CrossRef Google Scholar

    [11] 靳松, 张利, 钟增球, 等. 浙闽地区新元古代变火山岩系岩石地球化学特征及其地质意义[J]. 矿物岩石, 2008, (1): 97-105. doi: 10.3969/j.issn.1001-6872.2008.01.014

    CrossRef Google Scholar

    [12] 靳松, 张利, 钟增球, 等. 浙闽地区华夏地块新元古代变沉积岩地球化学特征及其地质意义[J]. 地球科学——中国地质大学学报, 2008, (6): 764-774.

    Google Scholar

    [13] 黄汲清. 中国区域地质的特征[J]. 地质学报, 1954, (3): 2-124.

    Google Scholar

    [14] 郭令智, 施央申, 马瑞士. 华南大地构造格架和地壳演化[C]//国际交流地质学术论文集. 北京: 地质出版社, 1980.

    Google Scholar

    [15] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28.

    Google Scholar

    [16] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23.

    Google Scholar

    [17] 许效松, 刘伟, 门玉澎, 等. 对新元古代湘桂海盆及邻区构造属性的探讨[J]. 地质学报, 2012, 86(12): 1890-1904. doi: 10.3969/j.issn.0001-5717.2012.12.003

    CrossRef Google Scholar

    [18] Lin S F, Xing G F, Davis D, et al. Appalachian-style multi-terrane wilson cycle model for the assembly of south china[J]. Geology, 2018, 46(4): 319-322. doi: 10.1130/G39806.1

    CrossRef Google Scholar

    [19] 水涛. 华夏造山带基底年代学研究的评析[J]. 浙江国土资源, 1995, (2): 14-19.

    Google Scholar

    [20] 水涛, 钱俊锋, 邱郁双, 等. 浙江若干基础地质问题讨论及对矿产资源勘查建议[C]//浙江省地质学会. 纪念地质学家朱庭祜先生诞辰120周年——浙江省地质学会2015年学术年会论文集. 浙江省地质学会: 浙江省科学技术协会, 2015.

    Google Scholar

    [21] 徐先兵, 张岳桥, 舒良树, 等. 武夷山地区前寒武纪地层沉积时代研究[J]. 地层学杂志, 2010, (3): 254-267.

    Google Scholar

    [22] 陈林燊. 龙泉群形成时代与构造属性及对华夏地块演化的限定[D]. 浙江大学硕士学位论文, 2017.

    Google Scholar

    [23] 刘远栋, 刘风龙, 张建芳, 等. 浙江龙泉地区变质基性岩年代学, 地球化学特征及构造意义[J]. 地质学报, 2021, 95(2): 413.

    Google Scholar

    [24] 刘远栋, 李翔, 徐磊, 等. 铉湖幅G50E001021瑞洋幅G50E002021 1/5万区域地质矿产调查报告[R]. 浙江省地质调查院, 2017.

    Google Scholar

    [25] 胡雄健, 许金坤. 浙南中元古界龙泉群的地质特征及构造演化[J]. 中国区域地质, 1992, (1): 20-30.

    Google Scholar

    [26] 刘晓强. 大别造山带晚中生代岩浆岩成因及其构造背景[D]. 合肥工业大学博士学位论文, 2018.

    Google Scholar

    [27] Sun S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [28] McLennan S M. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Process[J]. Review of Mineralogy, 1989, 21: 169-200.

    Google Scholar

    [29] 王仁民. 变质岩原岩图解判别法[M]. 北京: 地质出版社, 1987.

    Google Scholar

    [30] 向华. 浙西南前寒武纪变质基底岩系显生宙变质作用研究[D]. 中国地质大学硕士学位论文, 2008.

    Google Scholar

    [31] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6): 772-793.

    Google Scholar

    [32] Wang Y J, Zhang A M, Fan W, et al. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 2011, 127(1/2): 239-260.

    Google Scholar

    [33] 朱清波, 黄文成, 孟庆秀, 等. 华夏地块加里东期构造事件: 两类花岗岩的锆石U-Pb年代学和Lu-Hf同位素制约[J]. 中国地质, 2015, 42(6): 1715-1739.

    Google Scholar

    [34] Jiang J, Xing G F, Li L M, et al. Age and provenance of Cambrian sequences in the Nanping-Ninghua-Ganzhou tectonic belt: Implication for tectonic evolution of the Cathaysia Block[J]. Geological Journal, 2020, 55: 7057-7079. doi: 10.1002/gj.3860

    CrossRef Google Scholar

    [35] Yang Z Y, Jiang S Y. Detrital zircons in metasedimentary rocks of Mayuan and Mamianshan Group from Cathaysia Block in northwestern Fujian Province, South China: New constraints on their formation ages and paleogeographic implication[J]. Precambrian Research, 2019, 320: 13-30. doi: 10.1016/j.precamres.2018.10.004

    CrossRef Google Scholar

    [36] Shu L S, Deng P, Yu J H, et al. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China[J]. Sci China Ser D-Earth Sci, 2008, 51(8): 1053-1063. doi: 10.1007/s11430-008-0078-4

    CrossRef Google Scholar

    [37] Wang Y J, Zhang Y H, Fan W M, et al. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: geochronological, Lu-Hf isotopic and geochemical evidence from granitoid gneisses[J]. Precambrian Research, 2014, 249: 144-161. doi: 10.1016/j.precamres.2014.05.003

    CrossRef Google Scholar

    [38] Wang Y J, Zhang A M, Cawood P A, et al. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research, 2013, 231: 343-371.

    Google Scholar

    [39] Li L M, Lin S F, Xing G F, et al. First Direct Evidence of Pan-African Orogeny Associated with Gondwana Assembly in the Cathaysia Block of Southern China[J]. Scientific Reports, 2017, 7(1): 794

    Google Scholar

    [40] 向磊, 舒良树. 华南东段前泥盆纪构造演化: 来自碎屑锆石的证据[J]. 中国科学(D辑), 2010, 40(10): 1377.

    Google Scholar

    [41] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3): 553-567.

    Google Scholar

    [42] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.

    Google Scholar

    [43] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology, 1983, 91: 611-627.

    Google Scholar

    [44] Holland H D. The chemistry of the atmosphere and oceans[M]. John Wiley & Sons, Inc., 1978.

    Google Scholar

    [45] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology, 1986, 92(2): 181-193.

    Google Scholar

    [46] 于津海, 王丽娟, 周新民, 等. 粤东北基底变质岩的组成和形成时代[J]. 地球科学-中国地质大学学报, 2006, 31(1): 38-48.

    Google Scholar

    [47] 董学发, 余盛强, 唐增才, 等. 浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义[J]. 中国地质, 2016, 43(3): 817-828.

    Google Scholar

    [48] 赵希林, 姜杨, 邢光福, 等. 陈蔡早古生代俯冲增生杂岩: 对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.

    Google Scholar

    [49] 聂童春. 福建建瓯地区马面山俯冲增生杂岩的厘定及其意义[J]. 福建地质, 2018, 37(4): 273-287.

    Google Scholar

    [50] 聂童春, 周小栋. 福建建瓯高门地区马面山俯冲增生杂岩中石英岩地质特征及其成因探讨[J]. 福建地质, 2019, 38(4): 237-247.

    Google Scholar

    [51] 周小栋. 闽西北建瓯马面山俯冲增生杂岩带内斜长角闪岩的地球化学、年代学特征及其地质意义[J]. 福建地质, 2020, 39(2): 79-95.

    Google Scholar

    [52] Zhao L, Zhai M G, Zhou X W, et al. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting[J]. Lithos, 2015, 236/237: 226-244.

    Google Scholar

    [53] Lu K J, Li L M, Lin S F, et al. Geochronological and geochemical data of paragneiss and amphibolite from the Chencai Group in South China: Implications for petrogenesis and tectonic significance[J]. Geological Journal, 2020, 55: 6823-6840.

    Google Scholar

    [54] Ge Y P, Li L M, Zhao X L, et al. Early Palaeozoic oceanic island-seamount assemblage in northern Fujian, South China: Implications for pre-Devonian tectonic evolution of the Wuyi orogenic belt[J]. Geological Journal, 2020, 55: 3208-3228.

    Google Scholar

    [55] 隰弯弯, 陈世忠. 福建政和地区加里东期花岗岩的厘定及其大地构造意义[J]. 地质学报, 2019, 93(4): 804-815.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(843) PDF downloads(79) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint