2022 Vol. 41, No. 7
Article Contents

YANG Chongke, LU Xinxiang, YANG Yanwei, LIU Xinning, WANG Liwei. Geochemical characteristics and genetic analysis of BIF iron deposit background of Xincai iron deposit in He'nan Province[J]. Geological Bulletin of China, 2022, 41(7): 1258-1268. doi: 10.12097/j.issn.1671-2552.2022.07.012
Citation: YANG Chongke, LU Xinxiang, YANG Yanwei, LIU Xinning, WANG Liwei. Geochemical characteristics and genetic analysis of BIF iron deposit background of Xincai iron deposit in He'nan Province[J]. Geological Bulletin of China, 2022, 41(7): 1258-1268. doi: 10.12097/j.issn.1671-2552.2022.07.012

Geochemical characteristics and genetic analysis of BIF iron deposit background of Xincai iron deposit in He'nan Province

More Information
  • The Xincai iron deposit is located in the middle part of the Wuyang-Huoqiu iron ore belt on the southern margin of the North China Craton.The ore body is hosted in the Late Archean Taihua Group metamorphic rock series.The iron ore body is mainly lamellar and partially lenticular.The ore structure is mainly banded, with a small amount of disseminated and massive ores.iron ore is mainly composed of TFe2O3 and SiO2, followed by MgO and CaO, and Al2O3 and others such as Na2O, K2O, P2O5, TiO2 and MnO are mostly less than 0.1%。Trace and rare earth element analytical results show that large ionic lithophile element such as Sr, high field strength elements such as Nb, Ta, Zr, Hf and Ti are significantly depleted, in addition, Rb, U, La, Pb, Eu elements are abnormal, and the average Ti/V ratio is 24.13, the total amount of rare earth elements is relatively low, and the average ∑REE is 12.8×10-6.After being standardized by PAAS, iron ore shows enrichment in light rare earth elements ((La/Yb) PAAS=0.43~0.79, average 0.55), with obvious La positive anomaly (La/LaPAAS* average 1.15), Eu positive anomalies (Eu/Eu* average 2.88), Y abnormalities (Y/YPAAS* average 1.68), and weak Ce negative anomalies (Ce/CePAAS* average 0.90).A relatively high Y/Ho value (average of 44) indicates that iron-bearing formation was formed in a relatively hypoxic palaeo-marine environment, and the ore-forming materials were mainly derived from the mixing of high-temperature hydrothermal fluids and seawater associated with volcanic activity on the sea floor.The results for the ore-bearing amphibolite analysis and the tectonic setting for the formation of the orebodies show that the protolith of amphibolite should be a post-arc basin basalt, which represents the tectonic setting of the amphibolite formed in the back-arc basin.The tectonic environment of the amphibolite also basically represents the tectonic environment when the iron-bearing formation was deposited in this area。According to the comprehensive analysis, Xincai iron mine belongs to Algoma type BIF closely related to volcanic activities in the back-arc basin.

  • 加载中
  • [1] 沈保丰, 翟安民, 陈文明, 等. 中国前寒武纪成矿作用[M]. 北京: 地质出版社, 2006: 55-63.

    Google Scholar

    [2] 沈保丰. 中国BIF型铁矿床地质特征和资源远景[J]. 地质学报, 2012, 86(9): 1376-1395. doi: 10.3969/j.issn.0001-5717.2012.09.005

    CrossRef Google Scholar

    [3] James H L. Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49(3): 235-293. doi: 10.2113/gsecongeo.49.3.235

    CrossRef Google Scholar

    [4] James H L. Distribution of banded iron-formation in space andtime[C]//Trendall A F, Morris R C. Developments in Precambrian Geology, 1983, 6: 471-490.

    Google Scholar

    [5] Gross G A. A classification of iron formations based on depositional environments[J]. Canadian Mineralogist, 1980, 18(2): 215-222. doi: 10.1016/S0304-3991(79)80026-1

    CrossRef Google Scholar

    [6] 代堰锫, 朱玉娣, 张连昌, 等. 国内外前寒武纪条带状铁建造研究现状[J]. 地质论评, 2016, 62(3): 735-757.

    Google Scholar

    [7] Hou K J, Li Y H, Gao J F, et al. Geochemistry and Si-O-Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China[J]. Ore Geology Reviews, 2014, 57: 288-298. doi: 10.1016/j.oregeorev.2013.09.018

    CrossRef Google Scholar

    [8] 程裕淇. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题[J]. 地质学报, 1957, 37(2): 153-189.

    Google Scholar

    [9] 万渝生, 董春艳, 颉颃强, 等. 华北克拉通早前寒武纪条带状铁建造形成时代-SHRIMP锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008

    CrossRef Google Scholar

    [10] 张连昌, 代堰锫, 王长乐, 等. 鞍山-本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境[J]. 地球科学与环境学报, 2014, 36(4): 1-15. doi: 10.3969/j.issn.1672-6561.2014.04.001

    CrossRef Google Scholar

    [11] 李延河, 侯可军, 万德芳, 等. Algoma型和Suerior型硅铁建造地球化学对比研究[J]. 岩石学报, 2012, 28(11): 3513-3519.

    Google Scholar

    [12] 刘磊, 杨晓勇. 华北克拉通南苑霍邱杂岩岩石成因及BIF成矿作用[J]. 矿物学报, 2015, 增刊: 531.

    Google Scholar

    [13] 刘磊, 杨晓勇. 安徽霍邱BIF铁矿地球化学特征及其成矿意义——以班台子和周油坊矿床为例[J]. 岩石学报, 2013, 29(7): 2551-2566.

    Google Scholar

    [14] 杨晓勇, 王波华, 杜贞保, 等. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制[J]. 岩石学报, 2012, 28(11): 3476-3496.

    Google Scholar

    [15] 姚通, 李厚民, 肇创, 等. 河南舞阳地区铁山庙式铁矿: 一种特殊的BIF[J]. 矿床地质, 2014, 33(增刊): 153-154.

    Google Scholar

    [16] 张阔, 沈保丰, 孙丰月, 等. 河南舞阳地区赵案庄铁矿床成矿时代及地质意义——中国最古老的岩浆型铁矿床[J]. 矿床地质, 2016, 35(5): 889-901.

    Google Scholar

    [17] Lan C Y, Yang A Y, Wang C L, et al. Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincaibanded iron formation in the southern margin of the North China Craton: Implications on Neoarchean seawater compositions and solute sources[J]. Precambrian Research, 2017, 326: 240-257.

    Google Scholar

    [18] 杨崇科, 卢欣祥, 杨延伟, 等. 河南新蔡练村铁矿床地质特征与成矿构造背景[J]. 矿产与地质, 2018, 32(6): 1027-1034. doi: 10.3969/j.issn.1001-5663.2018.06.008

    CrossRef Google Scholar

    [19] 张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11): 3431-3445.

    Google Scholar

    [20] 沈其韩, 宋会侠, 赵子然. 山东韩旺新太古代条带状铁矿的稀土和微量元素特征[J]. 地球学报, 2009, 30(6): 693-699. doi: 10.3321/j.issn:1006-3021.2009.06.002

    CrossRef Google Scholar

    [21] Sun S S, Mcmonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London. Geological Society, 1989, 42: 301-315.

    Google Scholar

    [22] Mclennan S M. Rare erath elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Review in Minerlogy and Geochemistry, 1989, 21: 169-200.

    Google Scholar

    [23] Bau M. Effects of syn-and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations[J]. European Journal of Mineralogy, 1993, 5(2): 257-267. doi: 10.1127/ejm/5/2/0257

    CrossRef Google Scholar

    [24] Beukes N J, Klein C. Geochemistry and sedimentology of afacies transiton-from microbanded to granular iron-formation-in the Early Proterozoic Transvaal Supergroup, South Africa[J]. Precambrian Research, 1990, 47(1/2): 99-139. doi: 10.1016/0301-9268(90)90033-M

    CrossRef Google Scholar

    [25] Dymek R F, Klein C. Chemistry, petrology and origin of bandediron-formation lithologies from the 3800Ma Isua supracrustal belt, West Greenland[J]. Precambrian Research, 1998, 39(4): 247-302.

    Google Scholar

    [26] Shimizu H, Umemoto N, Masuda A, et al. Sources of iron-formations in the Archean Isua and Malene supracrustals, West Greenland: Evidence from La-Ce and Sm-Nd isotopic data and REE abundances[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1147-1154. doi: 10.1016/0016-7037(90)90445-Q

    CrossRef Google Scholar

    [27] Adekoya J A. The geology and geochemistry of the Maru banded iron-formation, northwestern Nigeria[J]. Journal of African Earth Sciences, 1998, 27(2): 241-257. doi: 10.1016/S0899-5362(98)00059-1

    CrossRef Google Scholar

    [28] Kholodov V N, Butuzova G Y. Problems of iron and phosphorus geochemistry in the Precambrian[J]. Lithology Mineral Resources, 2001, 36(4): 291-302. doi: 10.1023/A:1010442919377

    CrossRef Google Scholar

    [29] Hamade T, Konhauser K O, Raiswell R, et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J]. Geology, 2003, 31(1): 35-38. doi: 10.1130/0091-7613(2003)031<0035:UGSRTD>2.0.CO;2

    CrossRef Google Scholar

    [30] Wonder J, Spry P, Windom K. Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia[J]. Economic Geology, 1988, 83: 1070-1081. doi: 10.2113/gsecongeo.83.5.1070

    CrossRef Google Scholar

    [31] Bekker A, Slack J F, Planavsky N, et al. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508. doi: 10.2113/gsecongeo.105.3.467

    CrossRef Google Scholar

    [32] Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.

    Google Scholar

    [33] Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of Early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 2004, 222(1): 43-60. doi: 10.1016/j.epsl.2004.02.016

    CrossRef Google Scholar

    [34] Byrne R H, Lee J H. Comparative yttrium and rare earth element chemistries in seawater[J]. Marine Chemistry, 1993, 44(2/4): 121-130.

    Google Scholar

    [35] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148: 329-340. doi: 10.1016/S0012-821X(97)00034-4

    CrossRef Google Scholar

    [36] Danielson A, Moller P, Dulski P. The europium anomalies in banded iron formations and the thermal history of the Oceanic-crust[J]. Chemical Geology, 1992, 97(1/2): 89-100.

    Google Scholar

    [37] 李志红, 朱祥坤, 唐索寒. 鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示[J]. 岩石矿物学杂志, 2008, 27(4): 285-290. doi: 10.3969/j.issn.1000-6524.2008.04.004

    CrossRef Google Scholar

    [38] Huston D L, Logan G A. Barite, BIFs and bugs: Evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220: 41-55. doi: 10.1016/S0012-821X(04)00034-2

    CrossRef Google Scholar

    [39] Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa[J]. Geochimica et Cosmochimica Acta, 2008, 72: 378-394. doi: 10.1016/j.gca.2007.10.028

    CrossRef Google Scholar

    [40] Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochim Cosmochim Acta, 1999, 63: 363-372. doi: 10.1016/S0016-7037(98)00279-8

    CrossRef Google Scholar

    [41] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79: 37-55. doi: 10.1016/0301-9268(95)00087-9

    CrossRef Google Scholar

    卢欣祥, 韩宁, 杨延伟, 等. 河南东秦岭-大别山及邻区花岗岩和主要金属矿产分布规律图. 2018.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(2445) PDF downloads(145) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint