Citation: | ZHANG Hongrui, YANG Liqiang. Genetic types and identification characteristics of colloform pyrite[J]. Geological Bulletin of China, 2022, 41(6): 1039-1052. doi: 10.12097/j.issn.1671-2552.2022.06.011 |
Colloform pyrite is widely distributed in various geological bodies and the genetic information can be obtained by in-depth study of its classification type.By comparing and analyzing the morphology, the internal structure and geochemical features, the hydrothermal and sedimentary colloform pyrite can be effectively distinguished.In combination with the mapping method of Fe-S, Co-Ni, S-Se, Se-Te and sulfur isotope mapping proposed in this paper, the trace characteristics of colloform pyrite of various genetic types were compared.The colloform pyrite of sedimentary origin is mostly spherical, ellipsoidal and agglomerated, with Co/Ni < l, S/Se > 2.5×104, Se/Te < 0.45, and a wide-ranging δ34S ratio(-13‰~+13‰).Under the microscope, mineral isomorphism of clay are often observed.The colloform pyrite of hydrothermal origin mostly occurs as irregular veins and has a certain orientation, with 1 < Co/Ni < 5, lower S/Se ratio(< 2.5×104), and the Se/Te ratio more than 0.45, as well as a narrow range of 34S ratio(0~ 5‰).Among them, the colloform pyrite Co/Ni, S/Se and Se/Te of magmatic hydrothermal origin are all higher than the metamorphic hydrothermal origin.The nucleated and growing process of sedimentary colloform pyrite origin is under the anaerobic condition.In the bacterial sulfate reduction zone with the H2S, metal elements such as Cu, Zn and Mo are enriched in the crystalline nano-sized pyrite particles in the form of sulfide melt.The colloform pyrite of hydrothermal origin can be used as a mineral carrier.Au, As and other elements occur in the zone of colloform pyrite as a consequence of heteroepitaxial Stranski-Krastanov growth.The mineralogical phase can be changed into pyrrhotite under the lower temperature, which promotes the precipitation of copper.
[1] | Deng J, Yang L Q, Sun Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone Belt[J]. Acta Geologica Sinica, 2003, 77(4): 537-546. |
[2] | Barrie C D, Boyce A J, Boyle A P. Growth controls in colloform pyrite[J]. American Mineralogist, 2009, 94(4): 415-429. doi: 10.2138/am.2009.3053 |
[3] | Zhang Y J, Du Y P, Xu H R, et al. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach[J]. Cryst Eng Comm, 2011, 12(11): 3658-3663. |
[4] | Gao S, Huang F, Gu X P, et al. Growth pattern and its indication of spheroidal nano-micro crystal aggregates of pyrite in the Baiyunpu Pb-Zn polymetallic deposit, Central Hunan[J]. Acta Geologica Sinica, 2014, 88(6): 1770-1783. doi: 10.1111/1755-6724.12343 |
[5] | Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid, and gold- deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. doi: 10.1016/j.oregeorev.2015.08.021 |
[6] | Gao S, Huang F, Wang Y H, et al. A review of research progress in the genesis of colloform pyrite and its environmental indications[J]. Acta Geologica Sinica, 2016, 90(4): 1353-1369. doi: 10.1111/1755-6724.12774 |
[7] | Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105 |
[8] | Deng J, Wang C M, Bagas L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. doi: 10.1016/j.earscirev.2018.05.001 |
[9] | Zhang Y, Shao Y J, Chen H Y, et al. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes[J]. Ore Geology Reviews, 2017, 88: 534-549. doi: 10.1016/j.oregeorev.2016.08.002 |
[10] | Ohfuji H, Boyle A P, Prior D J, et al. Structure of framboidal pyrite: An electron backscatter diffraction study[J]. American Mineralogist, 2005, 90(11/12): 1693-1704. |
[11] | McKibben M A, Eldridge C S. Microscopic sulfur isotope variations in ore minerals from the viburnum trend, southeast Missouri; A SHRIMP study[J]. Economic Geology, 1995, 90(2): 228-245. doi: 10.2113/gsecongeo.90.2.228 |
[12] | Koglin N, Frimmel H E, Lawrie Minter W E, et al. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 2010, 45(3): 259-280. doi: 10.1007/s00126-009-0272-0 |
[13] | Yang L Q, Deng J, Li N, et al. Isotopic characteristics of gold deposits in the Yangshan Gold Belt, West Qinling, central China: Implications for fluid and metal sources and ore genesis[J]. Journal of Geochemical Exploration, 2016, 168: 103-118. doi: 10.1016/j.gexplo.2016.06.006 |
[14] | Lebedev L M. Metacolloids in Endogenic Deposits[M]. New York: Plenum Press, 1967: 162-196. |
[15] | Freitag K, Boyle A P, Nelson E, et al. The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: Example from the Greens Creek deposit(Alaska)[J]. Mineralium Deposita, 2004, 39(1): 103-113. doi: 10.1007/s00126-003-0386-8 |
[16] | McClenaghan S H, Lentz D R, Beaumont-Smith C J. The gold-rich Louvicourt volcanogenic massive sulfide deposit, New Brunswick: A Kuroko analogue in the Bathurst Mining Camp[J]. Exploration and Mining Geology, 2006, 15(3/4): 127-154. |
[17] | Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41. doi: 10.1016/j.gca.2015.03.020 |
[18] | Yang L Q, Deng J, Guo R P, et al. World-class Xincheng gold deposit: An example from the giant Jiaodong Gold Province[J]. Geoscience Frontiers, 2016, 7(3): 419-430. doi: 10.1016/j.gsf.2015.08.006 |
[19] | Schieber J, Riciputi L. Pyrite ooids in Devonian black Shales record intermittent sea-level drop and shallow-water conditions[J]. Geology, 2004, 32(4): 305-308. doi: 10.1130/G20202.1 |
[20] | Schieber J, Riciputi L. Pyrite and marcasite coated grains in the Ordovician Winnipeg Formation, Canada: An intertwined record of surface conditions, stratigraphic condensation, geochemical "Reworking, " and microbial activity[J]. Journal of Sedimentary Research, 2005, 75(5): 907-920. doi: 10.2110/jsr.2005.070 |
[21] | Barrie C D, Boyce A J, Boyle A P, et al. On the growth of colloform textures: A case study of sphalerite from the Galmoy ore body, Ireland[J]. Journal of the Geological Society, 2009, 166(3): 563-582. doi: 10.1144/0016-76492008-080 |
[22] | Deng J, Qiu K F, Wang Q F, et al. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. doi: 10.5382/econgeo.4711 |
[23] | Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit(Southern Urals, Russia)using laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141. doi: 10.2113/gsecongeo.104.8.1111 |
[24] | Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt(NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149. doi: 10.1016/j.oregeorev.2014.05.006 |
[25] | Deng J, Wang Q F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. doi: 10.1016/j.gr.2015.10.003 |
[26] | Yuan B X, Luan W L, Tu S T, et al. One-step synthesis of pure pyrite FeS2 with different morphologies in water[J]. New Journal of Chemistry, 2015, 39(5): 3571-3577. doi: 10.1039/C4NJ02243B |
[27] | Zhang J, Deng J, Chen H Y, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557-575. doi: 10.1016/j.gr.2013.11.003 |
[28] | Yang L Q, Deng J, Wang Z L, et al. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 165-178. doi: 10.1016/j.oregeorev.2015.07.006 |
[29] | Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita, 2014, 49(1): 49-74. doi: 10.1007/s00126-013-0473-4 |
[30] | Agangi A, Hofmann A, Rollion-Bard C, et al. Gold accumulation in the Archaean Witwatersrand Basin, South Africa- Evidence from concentrically laminated pyrite[J]. Earth-Science Reviews, 2015, 140: 27-53. doi: 10.1016/j.earscirev.2014.10.009 |
[31] | Falconer D M, Craw D, Youngson J H, et al. Gold and sulphide minerals in Tertiary quartz pebble conglomerate gold placers, Southland, New Zealand[J]. Ore Geology Reviews, 2006, 28(4): 525-545. doi: 10.1016/j.oregeorev.2005.03.009 |
[32] | 任云生, 刘连登. 铜陵地区热液成因胶状黄铁矿及其成矿意义[J]. 矿床地质, 2006, 25(S1): 95-98. |
[33] | Pacevski A, Moritz R, Kouzmanov K, et al. Texture and composition of Pb-bearing pyrite from the Coka Marin polymetallic deposit, Serbia, controlled by nanoscale inclusions[J]. Canadian Mineralogist, 2012, 50(1): 1-20. doi: 10.3749/canmin.50.1.1 |
[34] | Franchini M, McFarlane C, Maydagán L, et al. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition[J]. Ore Geology Reviews, 2015, 66: 366-387. doi: 10.1016/j.oregeorev.2014.10.022 |
[35] | Dekov V M, Kamenov G D, Abrasheva M D, et al. Mineralogical and geochemical investigation of seafloor massive sulfides from Panarea Platform(Aeolian Arc, Tyrrhenian Sea)[J]. Chemical Geology, 2013, 335: 136-148. doi: 10.1016/j.chemgeo.2012.10.048 |
[36] | 徐亮, 谢巧勤, 周跃, 等. 安徽铜陵矿集区铜官山矿田胶状黄铁矿矿物学特征及其对成矿作用的制约[J]. 岩石学报, 2019, 35(12): 3721-3733. doi: 10.18654/1000-0569/2019.12.09 |
[37] | 徐亮. 铜陵新桥矿床胶状黄铁矿成因及其纳米矿物学特性[D]. 肥工业大学硕士学位论文, 2017. |
[38] | 谢巧勤, 陈天虎, 范子良, 等. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J]. 中国科学: 地球科学, 2014, 44(12): 2665-2674. |
[39] | Deng J, Wang C M, Bagas L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006. doi: 10.1007/s00126-015-0584-1 |
[40] | Li Y, Selby D, Li X H, et al. Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle-Lower Yangtze River Metallogenic Belt, China[J]. Geology, 2018, 46(5): 391-394. doi: 10.1130/G39995.1 |
[41] | Deditius A P, Reich M, Kesler S E, et al. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 2014, 140: 644-670. doi: 10.1016/j.gca.2014.05.045 |
[42] | Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 615-630. doi: 10.1016/j.gca.2006.10.010 |
[43] | 张宇, 邵拥军, 周鑫, 等. 安徽铜陵新桥铜硫铁矿床胶状黄铁矿成因分析[J]. 矿床地质, 2012, 31(S1): 167-168. |
[44] | Genna D, Gaboury D. Deciphering the hydrothermal evolution of a VMS System by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod Deposits, Abitibi, Canada, and implications for exploration[J]. Economic Geology, 2015, 110(8): 2087-2108. doi: 10.2113/econgeo.110.8.2087 |
[45] | 严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. |
[46] | 肖鑫, 周涛发, 范裕, 等. 安徽铜陵新桥铜硫金矿床的成因: 来自两类黄铁矿微形貌学、地球化学特征的证据[J]. 岩石学报, 2016, 32(2): 369-376. |
[47] | Yang L Q, Deng J, Dilek Y, et al. Structure, Geochronology, and Petrogenesis of the Late Triassic Puziba Granitoid Dikes in the Mianlue Suture Zone, Qinling Orogen, China[J]. Geological Society of America Bulletin, 2015, 127(11/12): 1831-1854. |
[48] | Zhang L, Weinberg R F, Yang L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441. doi: 10.5382/econgeo.4716 |
[49] | 张宇, 邵拥军, 周鑫, 等. 安徽铜陵新桥铜硫铁矿床胶状黄铁矿主、微量元素特征[J]. 中国有色金属学报, 2013, 23(12): 3492-3502. |
[50] | Yang L Q. Editorial for special issue "Polymetallic Metallogenic system"[J]. Minerals, 2019, 9(7): 435. doi: 10.3390/min9070435 |
[51] | 汪在聪, 刘建明, 刘红涛, 等. 稳定同位素热液来源示踪的复杂性和多解性评述——以造山型金矿为例[J]. 岩石矿物学杂志, 2010, 29(5): 577-590. doi: 10.3969/j.issn.1000-6524.2010.05.013 |
[52] | Deng J, Wang Q F, Santosh M, et al. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274. doi: 10.1007/s00126-019-00925-0 |
[53] | Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita, 2014, 49(1): 49-74. doi: 10.1007/s00126-013-0473-4 |
[54] | 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. |
[55] | Yang L Q, Guo L N, Wang Z L, et al. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2017, 88: 491-510. doi: 10.1016/j.oregeorev.2016.06.027 |
[56] | Tatsuo Nozaki, Toshiro Nagase, Takayuki Ushikubo, et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 2021, 49(2): 222-227. doi: 10.1130/G47943.1 |
[57] | Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635 |
[58] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[59] | Wu Y F, Fougerouse D, Evans K, et al. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 2019, 47(7): 641-644. doi: 10.1130/G46114.1 |
[60] | Groves D I, Santosh M, Deng J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292. doi: 10.1007/s00126-019-00877-5 |
[61] | 徐亮, 谢巧勤, 陈天虎, 等. 铜陵矿集区层状硫化物矿床成因——来自胶状黄铁矿-菱铁矿型矿石矿物学制约[J]. 地质论评, 2017, 63(6): 97-108. |
[62] | Liu X T, Fike D, Li A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505: 66-75. doi: 10.1016/j.chemgeo.2018.12.014 |
[63] | 刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124-137. |
Comparison of geochemical characteristics of colloform pyrite with different genesis
The sulfur isotope characteristic values of the different origins' colloform pyrites, compared with the different lithology
Chemical reaction diagram(a)and its genesis model(b)of sedimentary colloform pyrite
Reflected light image(a), Raman images(b)and laser ablation ICP-MS compositional maps(c)of colloform pyrite
LA-ICP-MS images of trace elements in pyrite of Bendigos gold deposit, Australia
Metallogenic indicator diagrams of hydrothermal colloform pyrite