2022 Vol. 41, No. 6
Article Contents

LI Xiuzhang, WANG Yongjun, LI Yixin, FU Lebing, ZHANG Ming, WU Xingyu, ZHAO Yanyan, HUANG Xin, XU Chang, KONG Fanshun. Micro-geochemical characteristic of pyrites in the Heilangou gold deposit of penglai area and its implications for ore-forming fluid, Jiaodong gold province[J]. Geological Bulletin of China, 2022, 41(6): 1023-1038. doi: 10.12097/j.issn.1671-2552.2022.06.010
Citation: LI Xiuzhang, WANG Yongjun, LI Yixin, FU Lebing, ZHANG Ming, WU Xingyu, ZHAO Yanyan, HUANG Xin, XU Chang, KONG Fanshun. Micro-geochemical characteristic of pyrites in the Heilangou gold deposit of penglai area and its implications for ore-forming fluid, Jiaodong gold province[J]. Geological Bulletin of China, 2022, 41(6): 1023-1038. doi: 10.12097/j.issn.1671-2552.2022.06.010

Micro-geochemical characteristic of pyrites in the Heilangou gold deposit of penglai area and its implications for ore-forming fluid, Jiaodong gold province

More Information
  • In China, the largest gold concentration area is Jiaodong, in which the genetic type of gold deposits has always been controversial.Heilangou gold deposit is the largest one in Penglai area of Jiaodong and was well-known for producing gold nugget.In this paper, LA-ICP-MS was used to analyze the composition, variation trend and correlation of trace elements in pyrite of Heilangou gold deposit, and to discuss the formation of Au.Through field investigation, combined with mineralogy and backscatter electron image(BSE), the pyrite(Py1~Py3)in the main metallogenic stage(S1~S3)is divided into six subtypes.Through trace element analysis, it is found that the change trends of Cu, As, Ag, Au, Zn, Co, Ni, Pb, Sb and Bi are inconsistent from early to later stage.As and Au show strong positive correlation in every pyrite subtype, Cu-Zn, Ag-Sb and several other element pairs have high correlation, Pb-Bi has an upper correlation especially in three subtypes of Py1-1, Py2-1 and Py2-2, and also Co-Ni in most pyrite subtypes.The Co/Ni ratio is mainly in the range of 1.1 ~ 3.3, which indicates that the pyrite is mainly of magmatic hydrothermal origin.The ore-forming fluid of Heilangou gold deposit is rich in Au-As, and the trace elements are relatively enriched in S1 and S3 stages, which indicates that the ore-forming fluid activity lasts for a relatively long time and has the pulsating characteristics.Gold is precipitated by the fluid rich in Au-As for multiple activities and several times.

  • 加载中
  • [1] 宋明春, 宋英昕, 丁正江, 等. 胶东金矿床: 基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4): 406-422.

    Google Scholar

    [2] 侯明兰, 蒋少涌, 姜耀辉, 等. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J]. 岩石学报, 2006, 22: 2525-2533.

    Google Scholar

    [3] 侯明兰, 蒋少涌, 沈昆, 等. 胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究[J]. 岩石学报, 2007, 23: 2241-2256. doi: 10.3969/j.issn.1000-0569.2007.09.022

    CrossRef Google Scholar

    [4] Yang K F, Jiang P, Fan H R. Tectonic transition from a compressional to extensional metallogenic environment at ~120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton[J]. Journal of Asian Earth Sciences, 2018, 160: 408-425. doi: 10.1016/j.jseaes.2017.08.014

    CrossRef Google Scholar

    [5] 杨敏之, 吕古贤. 胶东绿岩带金矿地质地球化学[M]. 北京: 地质出版社, 1996: 1-222.

    Google Scholar

    [6] 王铁军, 阎方. 胶东地区岩浆热液型金矿成矿流体演化与成矿预测[J]. 地质找矿论丛, 2002, 17: 169-174. doi: 10.3969/j.issn.1001-1412.2002.03.005

    CrossRef Google Scholar

    [7] 朱奉三. 混合岩化热液金矿床成矿作用初步研究——以招掖地区的金矿床为例[J]. 地质与勘探, 1980, 7: 1-10.

    Google Scholar

    [8] 王勇军, 刘颜, 黄鑫, 等. 胶东牟乳成矿带范家庄金矿床成矿流体特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1012-1028.

    Google Scholar

    [9] 智云宝, 孙海瑞, 李风华. 山东栖霞笏山金矿床成因: 元素地球化学与流体包裹体证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1552-1569.

    Google Scholar

    [10] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45: 1153-1168.

    Google Scholar

    [11] Groves D I, Santosh M. The giant Jiaodong gold province: the key to a unified model for orogenic gold deposits?[J]. Geoscience Frontiers, 2016, 7: 409-417. doi: 10.1016/j.gsf.2015.08.002

    CrossRef Google Scholar

    [12] Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111: 105-126. doi: 10.2113/econgeo.111.1.105

    CrossRef Google Scholar

    [13] Goldfarb R J, Groves D I. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. doi: 10.1016/j.lithos.2015.07.011

    CrossRef Google Scholar

    [14] Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5: 139-153. doi: 10.1016/j.gsf.2013.11.001

    CrossRef Google Scholar

    [15] Goldfarb R J, Hart C, Davis G, et al. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons[J]. Economic Geology, 2007, 102: 341-345. doi: 10.2113/gsecongeo.102.3.341

    CrossRef Google Scholar

    [16] 陈衍景, Franco P, 赖勇, 等. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 2004, 20: 907-922.

    Google Scholar

    [17] 蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25: 35-46.

    Google Scholar

    [18] Wang L G, Qiu Y M, Mcnaughton N J, et al. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J]. Ore Geology Reviews, 1998, 13: 275-291. doi: 10.1016/S0169-1368(97)00022-X

    CrossRef Google Scholar

    [19] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.

    Google Scholar

    [20] Li L, Santosh M, Li S R. The'Jiaodong type'gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65: 589-611. doi: 10.1016/j.oregeorev.2014.06.021

    CrossRef Google Scholar

    [21] Gregory Daniel, Large Ross, Halpin Jacqueline. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110: 1389-1410. doi: 10.2113/econgeo.110.6.1389

    CrossRef Google Scholar

    [22] Lang J, Baker T. Intrusion-related gold systems: The present level of understanding[J]. Mineralium Deposita, 2001, 36(6): 477-489. doi: 10.1007/s001260100184

    CrossRef Google Scholar

    [23] Shabani K, Nezafati N, Momenzadeh M, et al. Geology, geochemistry and mineralogy of the Tareek Darreh Gold Deposit, Northeast Irán[J]. Geología Colombiana, 2010, 35: 131-142.

    Google Scholar

    [24] Jones C, Jenkin G, Boyce A, et al. Tellurium, magmatic fluids and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit, Scotland[J]. Ore Geology Reviews, 2018, 102: 894-905. doi: 10.1016/j.oregeorev.2018.05.014

    CrossRef Google Scholar

    [25] Large R A. carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits[J]. Economic Geology, 2011, 106: 331-358. doi: 10.2113/econgeo.106.3.331

    CrossRef Google Scholar

    [26] Cook N, Ciobanu C, Meria D, et al. Arsenopyrite-Pyrite association in an Orogenic Gold Ore: Tracing mineralization history from textures and trace[J]. Economic Geology, 2013, 108: 1273-1283. doi: 10.2113/econgeo.108.6.1273

    CrossRef Google Scholar

    [27] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J]. Isl. Arc, 1997, 6: 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x

    CrossRef Google Scholar

    [28] Xu J, Zhu G, Tong W, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134: 273-310. doi: 10.1016/0040-1951(87)90342-8

    CrossRef Google Scholar

    [29] Zhu G, Niu M, Xie C, et al. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin[J]. Anglais, 2010, 118: 277-293.

    Google Scholar

    [30] Wang Y. The onset of the Tan-Lu fault movement in eastern China: Constraints from zircon(SHRIMP)and 40Ar/39Ar dating[J]. Terra Nova, 2006, 18: 423-431. doi: 10.1111/j.1365-3121.2006.00708.x

    CrossRef Google Scholar

    [31] Zhu G, Wang Y, Liu G, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. J. Struct. Geol., 2005, 27: 1379-1398. doi: 10.1016/j.jsg.2005.04.007

    CrossRef Google Scholar

    [32] Zheng J P, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution[J]. Lithos, 2001, 57: 43-66. doi: 10.1016/S0024-4937(00)00073-6

    CrossRef Google Scholar

    [33] Zhang H F, Goldstein S, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contrib. Mineral. Petrol., 2008, 155: 271-293. doi: 10.1007/s00410-007-0241-5

    CrossRef Google Scholar

    [34] 田杰鹏. 胶东栖蓬福矿集区中生代金多金属矿区域成矿作用[D]. 中国地质大学(北京)博士学位论文, 2020.

    Google Scholar

    [35] 朱照先, 赵新福, 林祖苇, 等. 胶东金翅岭金矿床黄铁矿原位微量元素和硫同位素特征及对矿床成因的指示[J]. 地球科学, 2020, 45(3): 945-959.

    Google Scholar

    [36] 林祖苇, 赵新福, 熊乐, 等. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.

    Google Scholar

    [37] Reich M, Kesler S, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011

    CrossRef Google Scholar

    [38] Li X C, Fan H R, Santosh M, et al. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China[J]. Ore Geology Reviews, 2013, 53: 403-421. doi: 10.1016/j.oregeorev.2013.01.020

    CrossRef Google Scholar

    [39] 靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 中国地质大学(武汉)博士学位论文, 2017.

    Google Scholar

    [40] 范宏瑞, 冯凯, 李兴辉, 等. 胶东-朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10): 3225-3238.

    Google Scholar

    [41] Cha P, Hou Z Q, Zhang Z Y. Geology, Fluid Inclusion and Stable Isotope Constraints on the Fluid Evolution and Resource Potential of the Xiadian Gold Deposit, Jiaodong Peninsula[J]. Resource Geology, 2017, 67(3): 341-359. doi: 10.1111/rge.12134

    CrossRef Google Scholar

    [42] 范宏瑞, 胡芳芳, 杨进辉, 等. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 2005, 21(5): 1317-1328.

    Google Scholar

    [43] Li S R, Santosh M. Metallogeny and craton destruction: records from the North China Craton[J]. Ore Geology Reviews, 2014, 56: 376-414. doi: 10.1016/j.oregeorev.2013.03.002

    CrossRef Google Scholar

    [44] Wen B J, Fan H R, Santosh M, et al. Genesis of Two Different Types of Gold Mineralization in the Linglong Gold Field, China: Constrains From Geology, Fluid Inclusions and Stable Isotope[J]. Ore Geology Reviews, 2015, 65(3): 643-658.

    Google Scholar

    [45] Guo L N, Deng J, Yang L Q, et al. Gold Deposition and Resource Potential of the Linglong Gold Deposit, Jiaodong Peninsula: Geochemical Comparison of Ore Fluids[J]. Ore Geology Reviews, 2020, 120: 103434. doi: 10.1016/j.oregeorev.2020.103434

    CrossRef Google Scholar

    [46] Hu H L, Fan H R, Santosh M, et al. Ore-Forming Processes in the Wang'Ershan Gold Deposit(Jiaodong, China): InsightFrom Microtexture, Mineral Chemistry and Sulfur Isotope Compositions[J]. Ore Geology Reviews, 2020, 123: 103600. doi: 10.1016/j.oregeorev.2020.103600

    CrossRef Google Scholar

    [47] Cepedal A, Martínez-Abad I, Fuertes-Fuente M, et al. The presence of plumboan ingodite and a rare Bi-Pb tellurosulfide, Pb3Bi4Te4S5, in the limarinho gold deposit, northern Portugal[J]. The Canadian Mineralogist, 2013, 51(4): 643-651. doi: 10.3749/canmin.51.4.643

    CrossRef Google Scholar

    [48] Feng K, Fan H R, Hu F F, et al. Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilan gou gold deposit, Jiaodong, China: Evidence from trace element mapping and in-situ sulfur isotope composition[J]. Journal of Asian Earthences, 2018, 160: 304-321.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(1582) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint