2022 Vol. 41, No. 5
Article Contents

XU Yiming, HAO Wenhui, FANG Shiqi, CHENG Liqun, DU Lixin, XIE Wu, NIE Chenguang. Characteristics and origin of the geothermal anomaly in Sijia, Hebei Province[J]. Geological Bulletin of China, 2022, 41(5): 873-885. doi: 10.12097/j.issn.1671-2552.2022.05.012
Citation: XU Yiming, HAO Wenhui, FANG Shiqi, CHENG Liqun, DU Lixin, XIE Wu, NIE Chenguang. Characteristics and origin of the geothermal anomaly in Sijia, Hebei Province[J]. Geological Bulletin of China, 2022, 41(5): 873-885. doi: 10.12097/j.issn.1671-2552.2022.05.012

Characteristics and origin of the geothermal anomaly in Sijia, Hebei Province

More Information
  • Sijia geothermal anomaly with lot geothermal energy is located in the northwestern part of Qinglong of Hebei Province.In this paper, in order to protect and utilize the geothermal resources scientifically, the geothermal anomaly is studied by means of geothermal field measurement, hydrochemistry and isotope measurement, geophysics measurement, etc. The formation mechanism, occurrence environment and circulation mechanism of geothermal resources in four abnormal geothermal areas are discussed for the first time.According to the study of this area, it is found that the buried depth of geothermal wells in the four geothermal anomalies ranges from -0.94 m to 3.02 m, which is characterized by the shallow depth of the water level.The center of the anomaly in the area is dominated by vertical upward convective heat transfer, and the periphery of the anomaly is dominated by conductive heat transfer.The deep heat flow rises along the fault junction of the anomaly center and generates lateral migration and diffusion.It is stored within a certain range and formed geothermal anomalies in this area.The interpretation results of the CSAMT show that the deep granite body in this area is cut, so that the deep heat flow can rise along the fault, and mixed and heated to the bottom of the Sijia geothermal anomaly areas to form geothermal anomalies in the area.The results of water quality analysis indicated that the hydro-chemical type of the geothermal fluid in this area is mainly SO42--Na+ type, F- and SiO2 content both have a good positive correlation with water temperature, and those mass concentration are strictly controlled by the ground temperature field.The underground hot water in this area is replenished by atmospheric precipitation, which is the cause of the atmosphere.The value of 3H of the underground hot water in the area is low, ranging from 0.6 T.U to 0.8 T.U, which directive considers that the underground hot water in this area is older than 30 years.The achievement of these results will lead the geothermal resources exploration in eastern Hebei and similar mountainous areas.

  • 加载中
  • [1] Mongillo M A. Preface to geothermics special issue on sustainable geothermal utilization[J]. Geothermics, 2010, 39: 279-282. doi: 10.1016/j.geothermics.2010.09.011

    CrossRef Google Scholar

    [2] 汪集旸, 龚宇烈, 马伟斌, 等. 我国发展地热面临问题的分析及建议[C]// 首届"中国工程院/国家能源局能源论坛论文集". 北京: 化学工业出版社, 2010: 62-630.

    Google Scholar

    [3] 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评价[J]. 中国地质, 2013, 40(1) : 312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021

    CrossRef Google Scholar

    [4] 程立群, 徐一鸣, 杜立新, 等. 冀东燕山中段地热地质条件分析与资源潜力评价[J]. 矿产勘查, 2020, 11(12) : 2637-2646. doi: 10.3969/j.issn.1674-7801.2020.12.008

    CrossRef Google Scholar

    [5] 河北省区域地质矿产调查研究所, 河北省北京市天津市区域地质志[M]. 北京: 地质出版社, 2005.

    Google Scholar

    [6] 河北省地质矿产局. 河北省北京市天津市区域地质志[M]. 北京: 地质出版社, 1989: 322-586.

    Google Scholar

    [7] 刘俊长, 龚红蕾, 刘军恒, 河北省莫霍面和深部构造与矿集区的关系[J]. 物探与化探, 2011, 35(6) : 758-761.

    Google Scholar

    [8] 余恒昌, 邓孝, 陈碧婉, 等. 矿山地热与热害治理[M]. 北京: 煤炭工业版社, 1991: 46-93.

    Google Scholar

    [9] 河北省地矿局. 河北地热[M]. 北京: 地质出版社, 2013.

    Google Scholar

    [10] 河北省地矿局. 河北地下水[M]. 北京: 地质出版社, 2013.

    Google Scholar

    [11] 邱楠生, 唐博宁, 朱传庆. 中国大陆地区温泉分布的深部热背景[J]. 地质学报, 2022, 96(1) : 195-207. doi: 10.3969/j.issn.0001-5717.2022.01.016

    CrossRef Google Scholar

    [12] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 117-132.

    Google Scholar

    [13] 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988.

    Google Scholar

    [14] 沈照理, 朱宛华, 钟佐璨. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 71.

    Google Scholar

    [15] 任天培. 水文地质学[M]. 北京: 地质出版社, 1986.

    Google Scholar

    [16] Fournier R O, Rowe J J. The solubitity of amorphous silica in water at high temperature and high pressures[J]. American Mineralogist, 1977, 62: 1052.

    Google Scholar

    [17] Fournier R O. Application of Water geochemistry to geothermal exploration and reservoir engineering[C]//Ryhack L, Muffer L J P. Geothermal Systems: Principle and Case Histories, 1981: 113.

    Google Scholar

    [18] Payne B R. Water balance of Lake Chala and its relation to groundwater from tritium an stable isotope data[J]. Journal of Hydrology, 1970, 11(1) : 47-58. doi: 10.1016/0022-1694(70)90114-9

    CrossRef Google Scholar

    [19] Chen J S, Zhao X, Fan Z C, et al. Isotope method for confined groundwater recharge of the lower reaches of Heihe River, Inner Mongolia, China[J]. Acta Geologica Sinica, 2007, 81(4) : 668-673. doi: 10.1111/j.1755-6724.2007.tb00990.x

    CrossRef Google Scholar

    [20] Jiang Y J, Yuan D X, Xie S Y, et al. Groundwater quality and land use in a typical karst agricultural region[J]. Journal of Geographical Sciences, 2006, 16(4) : 405-414. doi: 10.1007/s11442-006-0403-9

    CrossRef Google Scholar

    [21] Montoroi J P, Grunberger O, Nasri S. Groundwater geochemistry of a small reservoir catchment in Central Tunisia[J]. Applied Geochemistry, 2002, 17: 1047-1060. doi: 10.1016/S0883-2927(02)00076-8

    CrossRef Google Scholar

    [22] 张卫民. 应用SiO2地热温度计估算地热储温度——以赣南横泾地区若干温泉为例[J]. 地球学报, 2001, 22(2) : 185-188. doi: 10.3321/j.issn:1006-3021.2001.02.018

    CrossRef Google Scholar

    [23] 王莹, 周训, 于湲, 等. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4) : 605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    [24] 刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6) : 2221-2231.

    Google Scholar

    [25] 赵敬波, 周训, 方斌, 等. 天津地区深层地下热水井水动力特征[J]. 现代地质, 2011, 25(2) : 363-392. doi: 10.3969/j.issn.1000-8527.2011.02.021

    CrossRef Google Scholar

    [26] 郭清海. 岩浆热源型地热系统释义[J]. 地质学报, 2022, 96(1) : 208-214. doi: 10.3969/j.issn.0001-5717.2022.01.017

    CrossRef Google Scholar

    [27] 汪洋, 汪集旸, 邓普福, 等. 中国大陆地壳和岩石圈铀、钍、钾丰度的大地热流约束[J]. 地球物理学进展, 2001, 16(3) : 47-56. doi: 10.3969/j.issn.1004-2903.2001.03.006

    CrossRef Google Scholar

    [28] 刘光亚. 基岩地下水[M]. 北京: 地质出版社, 1979: 52-58.

    Google Scholar

    [29] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7) : 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    CrossRef Google Scholar

    [30] Wang G L, Wang W L, Zhang W, et al. The status quo and prospect of geothermal resources exploration and development in Beijing- Tianjin-Hebei region in China[J]. China Geology, 2020, 3: 173-181. doi: 10.31035/cg2020013

    CrossRef Google Scholar

    [31] Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 2018, 1: 273-285. doi: 10.31035/cg2018021

    CrossRef Google Scholar

    徐一鸣, 程立群、郝文辉, 等. 河北省青龙满族自治县西部山区地热资源调查评价报告. 河北省地矿局第八地质大队, 2019.

    Google Scholar

    贺鹏起, 杨立顺, 尚福平, 等. 河北省秦皇岛市地热资源调查评价. 河北省地矿局第八地质大队, 2003.

    Google Scholar

    张双增, 吴连亨, 梁国庆, 等. 青龙县幅1: 5万地质图说明书. 河北省地质调查院, 1996.

    Google Scholar

    张双增, 吴连亨, 梁国庆, 等. 肖营子幅1: 5万地质图说明书. 河北省地质调查院, 1996.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(1894) PDF downloads(63) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint