2024 Vol. 43, No. 12
Article Contents

SONG Zhiwei, ZHAO Jiaqi, LIANG Chenyue. 2024. Deformation characteristics, deformation age and dynamic background of Dagujia ductile shear zone in Qingyuan, northern Liaoning Province. Geological Bulletin of China, 43(12): 2256-2271. doi: 10.12097/gbc.2024.07.067
Citation: SONG Zhiwei, ZHAO Jiaqi, LIANG Chenyue. 2024. Deformation characteristics, deformation age and dynamic background of Dagujia ductile shear zone in Qingyuan, northern Liaoning Province. Geological Bulletin of China, 43(12): 2256-2271. doi: 10.12097/gbc.2024.07.067

Deformation characteristics, deformation age and dynamic background of Dagujia ductile shear zone in Qingyuan, northern Liaoning Province

More Information
  • The Qingyuan area in northern Liaoning Province is located in the eastern segment of the northern margin of the North China Craton, with large−scale strongly deformed granitic rocks. It is an important window to further study the Mesozoic Yanshanian movement and the superposition and transformation of multiple tectonic regimes of NE China. In this paper, the deformation characteristics, age and dynamical background of the regional Dagujia ductile shear zone are determined by detailed macro− and micro−structure analysis, finite strain measurements, quartz EBSD fabric and zircon U−Pb dating. The results show that the Dagujia ductile shear zone develops NW−SE−trending foliations and SE−plunging mineral stretching lineations, with a NW−trending sinistral strike−slip shear characteristics. The deformation temperatures of the rocks are relatively high, ranging between 550°C and 650°C. The granitic rocks in the shear zone primarily formed in Mesozoic multi−stage magmatism. Combined with the regional tectonic chronology data, the deformation age of the shear zone is the latest Late Jurassic to earliest Early Cretaceous, reflecting the local response of the Yanshanian Movement B−episode in the northern Liaoning Province. The Reactivation of regional fault zones caused by the subduction of the Paleo−Pacific Plate is the main reason for the formation of the Dagujia ductile shear zone.

  • 加载中
  • [1] Bhattacharya A R, Weber K. 2004. Fabric development during shear deformation in the Main Central Thrust Zone, NW−Himalaya, India[J]. Tectonophysics, 387(1): 23−46.

    Google Scholar

    [2] Chen H Y, Zhang Y Q, Zhang J D, et al. 2014. LA−ICP−MS zircon U−Pb age and geochemical characteristics of tuff of Jiulongshan Formation from Chengde basin, northern Hebei[J]. Geological Bulletin of China, 33(7): 966−973 (in Chinese with English abstract).

    Google Scholar

    [3] Chen J S, Li W W, Shi Y, et al. 2022. Evolution of the eastern segment of the northern margin of the North China Craton in the Triassic: Evidence from the geochronology and geochemistry of magmatic rocks in Kaiyuan area, North Liaoning[J]. Acta Petrologica Sinica, 38(8): 2216−2248 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.03

    CrossRef Google Scholar

    [4] Chen Y, Zhu G, Jiang D Z, et al. 2013. Timing Determination of Phase B of the Yanshanian Movement in the Eastern North China Craton: Evidence from Dating of A Ductile Shear Zone in Sihetang, Northeastern Beijing[J]. Acta Geologica Sinica, 87(3): 295−310 (in Chinese with English abstract).

    Google Scholar

    [5] Chen L M, Liu P H, Du L L, et al. 2023. Depositional age and provenance of the Anshan Group in the Gongchangling area, Liaoning Province: Constraints from detrital zircon U−Pb−Hf isotopic and rare earth element composition in the garnet−staurolite−mica−quartz schist[J]. Geological Bulletin of China, 42(12): 2037−2059 (in Chinese with English abstract).

    Google Scholar

    [6] Dong S W, Zhang Y Q, Zhang F Q. et al. 2015. Late Jurassic−Early Cretaceous Continental Convergence and Intracontinental Orogenesis in East Asia: A synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 114: 750−770. doi: 10.1016/j.jseaes.2015.08.011

    CrossRef Google Scholar

    [7] Dong S W, Zhang Y Q, Li H L, et al. 2018. The Yanshan orogeny and late Mesozoic multi−plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China Earth Sciences, 61: 1888−1909. doi: 10.1007/s11430-017-9297-y

    CrossRef Google Scholar

    [8] Duan D, Zheng C Q, Liang C Y, et al. 2024. Petrogeochemical characteristics and tectonic significance of Middle Jurassic intrusive pluton in Xiajiabao area, Qingyuan, northern Liaoning[J]. Earth Science, 49(3): 868−892 (in Chinese with English abstract).

    Google Scholar

    [9] Fry N. 1979. Random point distributions and strain measurements in rocks[J]. Tectonophysics, 60(1/2): 89−105. doi: 10.1016/0040-1951(79)90135-5

    CrossRef Google Scholar

    [10] Fu Z B, Zhao Y, Liu J L, et al. 2018. Revisiting of the Yanshanian basins in western and northern Beijing, North China[J]. Journal of Asian Earth Sciences, 163: 90−107. doi: 10.1016/j.jseaes.2018.05.016

    CrossRef Google Scholar

    [11] Gu C C, Zhu G, Zhai M J, et al. 2016. Features and origin time of Mesozoic strike−slip structures in the Yilan−Yitong Fault Zone[J]. Science China Earth Sciences, 59: 2389−2410. doi: 10.1007/s11430-016-5334-4

    CrossRef Google Scholar

    [12] Gu C C, Zhu G, Li Y J, et al. 2018. Timing of deformation and location of the eastern Liaoyuan Terrane, NE China: Constraints on the final closure time of the Paleo−Asian Ocean[J]. Gondwana Research, 60: 194−212. doi: 10.1016/j.gr.2018.04.012

    CrossRef Google Scholar

    [13] Han Y G, Yan D P, Li Z L. 2015. A new solution for finite strain measurement by Fry method in the CorelDRAW platform[J]. Geoscience, 29(3): 494−500 (in Chinese with English abstract).

    Google Scholar

    [14] Hao W X, Zhu G, Zhu R X. 2019. Timing of the Yanshan Movement: Evidence from the Jingxi Basin in the Yanshan fold−and−thrust belt, eastern China[J]. International Journal of Earth Sciences, 108: 1961−1978. doi: 10.1007/s00531-019-01743-5

    CrossRef Google Scholar

    [15] Hao W X, Zhu R X, Zhu G. 2020. Jurassic tectonics of the eastern North China Craton: Response to initial subduction of the Paleo−Pacific Plate[J]. Geological Society of America Bulletin, 133(1/2): 19−36.

    Google Scholar

    [16] Hu P Y, Liang C Y, Zheng C Q, et al. 2019. Tectonic transformation and metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from geochemistry and zircon U−Pb geochronology of the adamellites in Xingcheng, western Liaoning, China[J]. Minerals, 9(9): 518. doi: 10.3390/min9090518

    CrossRef Google Scholar

    [17] Li H L, Zhang H R, Qu H J, et al. 2014. Initiation, the first stage of the Yanshan (Yenshan) Movement in Western Hills. Constraints from zircon U−Pb dating[J]. Geological Review, 60(5): 1026−1042 (in Chinese).

    Google Scholar

    [18] Li Z X. 2016. Study on the prospecting method of Shahe fault zone in northern Liaoning[J]. Non−Ferrous Mining and Metallurgy, 32(2): 5−9 (in Chinese with English abstract).

    Google Scholar

    [19] Li Z, Zhang W, Yang F, et al. 2020. Petrogenesis of the Mesoarchean granodioritic−tonalitic gneisses in the Kaiyuan area, northern Liaoning: Elemental and zircon U−Pb−Hf isotopic geochemical constraints[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1292–1311 (in Chinese with English abstract).

    Google Scholar

    [20] Liang C Y, Liu Y J, Zheng C Q, et al. 2019. Macro−and microstructural, textural fabrics and deformation mechanism of calcite mylonites from Xar Moron−Changchun dextral shear zone, Northeast China[J]. Acta Geologica Sinica (English Edition), 93(5): 1477−1499. doi: 10.1111/1755-6724.14357

    CrossRef Google Scholar

    [21] Liang C Y, Liu Y J, Song Z W, et al. 2020. Deformation pattern and age of Hulin complex in Heilongjiang Province: Implications for subduction of the Palaeo−pacific plate during the Early Cretaceous, eastern NE China[J]. Acta Petrologica Sinica, 36(3): 685−702 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.03.04

    CrossRef Google Scholar

    [22] Liu D Y, Nutman A P, Compston W, et al. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino−Korean craton[J]. Geology, 20(4): 339−342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    CrossRef Google Scholar

    [23] Liu J, Liu Z H, Li S C, et al. 2016. Geochronology and geochemistry of Triassic intrusive rocks in Kaiyuan area of the eastern section of the northern margin of North China[J]. Acta Petrologica Sinica, 32(9): 2739−2756 (in Chinese with English abstract).

    Google Scholar

    [24] Liu J, Zhang J, Liu Z H, et al. 2020. Petrogenesis of Permo−Triassic intrusive rocks in Northern Liaoning Province, NE China: implications for the closure of the eastern Paleo−Asian Ocean[J]. International Geology Review, 62(6): 754−780. doi: 10.1080/00206814.2019.1633693

    CrossRef Google Scholar

    [25] Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05

    CrossRef Google Scholar

    [26] Liu Z H, Wang C, Song J, et al. 2016. 40Ar−39Ar dating and its tectonic significance of the Hulan Group at the northern margin of the North China Plate[J]. Acta Petrologica Sinica, 32(9): 2757−2764 (in Chinese with English abstract).

    Google Scholar

    [27] Okudaira T, Takeshita T, Hara I, et al. 1995. A new estimate of the conditions for transition from basal <a> to prism [c] slip in naturally deformed quartz[J]. Tectonophysics, 250(1): 31−46.

    Google Scholar

    [28] Peng Y B, Liu W B, Zhao J, et al. 2022. LA−ICS−MS zircon U−Pb dating and geochemical characteristics of Yingchang pluton in Xifeng area of the North Liaoning province[J]. Contributions to Geology and Mineral Resources Research, 37(3): 344−353 (in Chinese with English abstract).

    Google Scholar

    [29] Ren Q, Zhang S, Wu H, et al. 2016. Further paleomagnetic results from the similar to 155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol−Okhotsk suture[J]. Gondwana Research, 35: 180−191. doi: 10.1016/j.gr.2015.05.002

    CrossRef Google Scholar

    [30] Shao H W, Li J J, Liu H G, et al. 2007. Shahe ductile shear zone in northern Liaoning Province and its ore−searching importance[J]. Geology and Resources, 16(1): 23−28 (in Chinese with English abstract).

    Google Scholar

    [31] Shi S S, Shi Y, Zhang C, et al. 2022. Geochronology and geochemistry of the Triassic intrusive rocks in the Faku area, northern Liaoning, China: Constraints on the evolution of the Palaeo−Asian Ocean[J]. Geological Journal, 57(4): 1658−1681. doi: 10.1002/gj.4368

    CrossRef Google Scholar

    [32] Shu T, Xu H J, Zhang J F, et al. 2019. Deformation characteristics and time of Taipingshan folds in Fangshan area, Beijing: Implications for Early Cretaceous compressional tectonics of North China Craton[J]. Earth Science, 44(5): 1734−1748 (in Chinese with English abstract).

    Google Scholar

    [33] Song Z W, Zheng C Q, Liang C Y, et al. 2021. Identification and geological significance of Early Jurassic adakitic volcanic rocks in Xintaimen area, western Liaoning[J]. Minerals, 11(3): 331. doi: 10.3390/min11030331

    CrossRef Google Scholar

    [34] Song Z W, Liang C Y, Neubauer F, et al. 2022. Multistage evolution of the Keluo complex in the northern Da Hinggan Mountains: Implications for the Mesozoic tectonic history of the eastern Central Asian Orogenic Belt[J]. Gondwana Research, 107: 339−369. doi: 10.1016/j.gr.2022.04.002

    CrossRef Google Scholar

    [35] Song Z W, Zheng C Q, Lin B, et al. 2023. Geological characteristics of Late Jurassic volcanic rocks in Sierbao−Baita Basin, West Liaoning province and its response to Yanshan Movement[J]. Earth Science, 48(10): 3689−3706 (in Chinese with English abstract).

    Google Scholar

    [36] Su N, Zhu G. 2022. Stratigraphical sequences and chronological framework of Cretaceous in the western Liaoning region[J]. Geotectonica et Metallogenia, 46(5): 993−1021 (in Chinese with English abstract).

    Google Scholar

    [37] Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River−Changchun−Yanji plate suture zone Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).

    Google Scholar

    [38] Tang J, Xu W L, Wang F, et al. 2018. Subduction history of the Paleo−Pacific slab beneath Eurasian continent: Mesozoic−Paleogene magmatic records in Northeast Asia[J]. Science China Earth Sciences, 61: 527−559. doi: 10.1007/s11430-017-9174-1

    CrossRef Google Scholar

    [39] Wang X Q, Liu M, Mao J W. 2024. The Paleoproterozoic basin evolution of the Zhongtiao Mountain region in the Trans−North China Orogen, North China Craton[J]. Geological Bulletin of China, 43(4): 546–560 (in Chinese with English abstract).

    Google Scholar

    [40] Wang Y, Sun L X, Zhou L Y, et al. 2018. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Science China Earth Sciences, 61: 499−514.

    Google Scholar

    [41] Wang Z J, Xu W L, Pei F P, et al. 2015. Geochronology and geochemistry of middle Permian–Middle Triassic intrusive rocks from central–eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo−Asian Ocean[J]. Lithos, 238: 13−25. doi: 10.1016/j.lithos.2015.09.019

    CrossRef Google Scholar

    [42] Wong W H. 1926. Crustal Movement in Eastern China[C]//Procceding of the 3th Pan−Pacific Scientific Congress, Tokyo, 1: 265–285.

    Google Scholar

    [43] Wong W H. 1927. Crustal movements and igneous activities in Eastern China since Mesozoic time[J]. Bulletin of the Geological Society of China, 6: 9−37. doi: 10.1111/j.1755-6724.1927.mp6001002.x

    CrossRef Google Scholar

    [44] Wong W H. 1929. The Mesozoic orogenic movement in Eastern China[J]. Bulletin of the Geological Society of China, 8: 33−44. doi: 10.1111/j.1755-6724.1929.mp8001004.x

    CrossRef Google Scholar

    [45] Wu F Y, Zhao G C, Sun D Y, et al. 2007. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 30(3): 542−556.

    Google Scholar

    [46] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [47] Xu Z Q, Wang Q, Liang F H, et al. 2009. Electron backscatter diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 25(7): 1721−1736 (in Chinese with English abstract).

    Google Scholar

    [48] Yuan L L, Zhang X H, Xue F H, et al. 2016. Late Permian high−Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo−Asian ocean and the orogen−craton boundary[J]. Lithos, 258/259: 58–76.

    Google Scholar

    [49] Zeng J, Wei W, Lin W, et al. 2021. The Late Jurassic extensional event in the Yanshan fold and thrust belt (North China): New insights from an integrated study of structural geology, geophysics, and geochemistry of the Siganding granitic pluton[J]. Journal of Asian Earth Sciences, 211: 104708. doi: 10.1016/j.jseaes.2021.104708

    CrossRef Google Scholar

    [50] Zhai M G. 2012. Evolution of the North China Craton and Early Plate Tectonics[J]. Acta Geologica Sinica, 86(9): 1335−1349 (in Chinese with English abstract).

    Google Scholar

    [51] Zhang C H, Deng H L, Li C M, et al. 2012. An out−of−syncline thrust model for the "Chengde Thrust Sheet" in central intraplate Yanshan Orogenic Belt, northern North China Craton[J]. Earth Science Frontiers, 19(5): 27−40 (in Chinese with English abstract).

    Google Scholar

    [52] Zhang H H, Wang F, Xu W L, et al. 2016. Petrogenesis of Early–Middle Jurassic intrusive rocks in Northern Liaoning and Central Jilin provinces, Northeast China: Implications for the extent of spatial–temporal overprinting of the Mongol−Okhotsk and Paleo−Pacific tectonic regimes[J]. Lithos, 256/257: 132–147.

    Google Scholar

    [53] Zhang N, Wang C B, Liu Z H, et al. 2022. Tectonic evolution of the Late Paleozoic−Early Mesozoic orogenic belt in the eastern segment of the northern margin of the North China Block: Evidence from meta−volcanic rocks of Jianshanzi, northern Liaoning Province[J]. Acta Petrologica Sinica, 38(8): 2323−2344 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.07

    CrossRef Google Scholar

    [54] Zhang Z K, Ling M X, Lin W, et al. 2020. “Yanshanian Movement” induced by the westward subduction of the Paleo−Pacific plate[J]. Solid Earth Sciences, 5(2): 103−114. doi: 10.1016/j.sesci.2020.04.002

    CrossRef Google Scholar

    [55] Zhao G C, Cawood P A, Li S, et al. 2012. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 222: 55−76.

    Google Scholar

    [56] Zhao Y, Xu G, Zhang S H, et al. 2004. Yanshanian movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 11(3): 319−328 (in Chinese with English abstract).

    Google Scholar

    [57] Zhao Y, Gao H L, Zhang S H, et al. 2022. A brief century review of the “Yanshan Movement” and its founder[J]. Acta Geologica Sinica, 96(5): 1510−1523 (in Chinese with English abstract).

    Google Scholar

    [58] Zheng Y D, Chang Z Z, 1985. Finite strain measurement and ductile shear zones[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [59] Zhou J B, Han J, Simon A W, et al. 2013. A primary study of the Jilin−Heilongjiang high−pressure metamorphic belt: Evidence and tectonic implications[J]. Acta Petrologica Sinica, 29(2): 386−398 (in Chinese with English abstract).

    Google Scholar

    [60] Zhu G, Liu C, Gu C C, et al. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan−Lu Fault Zone[J]. Science China Earth Sciences, 61: 386−405. doi: 10.1007/s11430-017-9136-4

    CrossRef Google Scholar

    [61] 陈海燕, 张运强, 张计东, 等. 2014. 冀北承德盆地侏罗系九龙山组凝灰岩LA‒ICP‒MS锆石U−Pb年龄与地球化学特征[J]. 地质通报, 33(7): 966−973. doi: 10.3969/j.issn.1671-2552.2014.07.004

    CrossRef Google Scholar

    [62] 陈井胜, 李崴崴, 时溢, 等. 2022. 华北板块北缘东段三叠纪构造演化——来自辽北开原岩浆岩年代学、地球化学的证据[J]. 岩石学报, 38(8): 2216−2248. doi: 10.18654/1000-0569/2022.08.03

    CrossRef Google Scholar

    [63] 陈丽梅, 刘平华, 杜利林, 等. 2023. 辽宁弓长岭鞍山群时代与物源——来自石榴十字云母片岩碎屑锆石U–Pb–Hf同位素特征与稀土元素组成的约束[J]. 地质通报, 42(12): 2037−2059. doi: 10.12097/j.issn.1671-2552.2023.12.003

    CrossRef Google Scholar

    [64] 陈印, 朱光, 姜大志, 等. 2013. 四合堂剪切带活动时代及其对燕山运动B幕时间的限定[J]. 地质学报, 87(3): 295−310. doi: 10.3969/j.issn.0001-5717.2013.03.001

    CrossRef Google Scholar

    [65] 翟明国. 2012. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 86(9): 1335−1349. doi: 10.3969/j.issn.0001-5717.2012.09.002

    CrossRef Google Scholar

    [66] 段东, 郑常青, 梁琛岳, 等. 2024. 辽北清原夏家堡中侏罗世侵入体岩石地球化学特征及构造意义[J]. 地球科学, 49(3): 868−892.

    Google Scholar

    [67] 韩阳光, 颜丹平, 李政林. 2015. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质, 29(3): 494−500. doi: 10.3969/j.issn.1000-8527.2015.03.002

    CrossRef Google Scholar

    [68] 李海龙, 张宏仁, 渠洪杰, 等. 2014. 燕山运动“绪动/A幕”的本意及其锆石U−Pb年代学制约[J]. 地质论评, 60(5): 1026−1042.

    Google Scholar

    [69] 李忠宪. 2016. 辽北沙河断裂带找矿方法研究[J]. 有色矿冶, 32(2): 5−9. doi: 10.3969/j.issn.1007-967X.2016.02.002

    CrossRef Google Scholar

    [70] 李壮, 张伟, 杨帆, 等. 2020. 辽北开原中太古代花岗闪长质‒英云闪长质片麻岩成因: 元素和锆石U−Pb−Hf同位素地球化学制约[J]. 矿物岩石地球化学通报, 39(6): 1292−1311.

    Google Scholar

    [71] 梁琛岳, 刘永江, 宋志伟, 等. 2020. 黑龙江虎林杂岩变形样式与时代: 对中国东北东部早白垩世古太平洋板块俯冲的启示[J]. 岩石学报, 36(3): 685−702.

    Google Scholar

    [72] 刘锦, 刘正宏, 李世超, 等. 2016. 华北北缘东段开原地区三叠纪侵入岩年代学及岩石地球化学研究[J]. 岩石学报, 32(9): 2739−2756.

    Google Scholar

    [73] 刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047.

    Google Scholar

    [74] 刘志宏, 王超, 宋健, 等. 2016. 华北板块北缘呼兰群40Ar−39Ar定年及其构造意义[J]. 岩石学报, 32(9): 2757−2764.

    Google Scholar

    [75] 彭游博, 刘文彬, 赵军, 等. 2022. 辽北西丰地区晚侏罗世营厂岩体LA‒ICP‒MS锆石U‒Pb年龄及岩石地球化学特征[J]. 地质找矿论丛, 37(3): 344−353. doi: 10.6053/j.issn.1001-1412.2022.03.010

    CrossRef Google Scholar

    [76] 邵会文, 李俊杰, 刘洪光, 等. 2007. 辽北沙河韧性剪切构造带及其找矿意义[J]. 地质与资源, 16(1): 23−28. doi: 10.3969/j.issn.1671-1947.2007.01.005

    CrossRef Google Scholar

    [77] 舒坦, 续海金, 章军锋, 等. 2019. 北京房山地区太平山褶皱的变形特征和形成时代: 华北克拉通早白垩世挤压构造的意义[J]. 地球科学, 44(5): 1734−1748.

    Google Scholar

    [78] 宋志伟, 郑常青, 林波, 等. 2023. 辽西寺儿堡‒白塔盆地晚侏罗世火山岩地质特征及其对燕山运动的响应[J]. 地球科学, 48(10): 3689−3706.

    Google Scholar

    [79] 苏楠, 朱光. 2022. 辽西地区白垩纪地层序列与年代学框架[J]. 大地构造与成矿学, 46(5): 993−1021.

    Google Scholar

    [80] 孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河‒长春‒延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 34(2): 174−181.

    Google Scholar

    [81] 王晓青, 刘敏, 毛景文. 2024. 华北克拉通中部造山带中条山地区古元古代盆地演化[J]. 地质通报, 43(4): 546−560.

    Google Scholar

    [82] 许志琴, 王勤, 梁凤华, 等. 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 25(7): 1721−1736.

    Google Scholar

    [83] 张诺, 王长兵, 刘正宏, 等. 2022. 华北板块北缘东段晚古生代‒早中生代造山带构造演化: 来自辽北开原地区尖山子变质火山岩的证据[J]. 岩石学报, 38(8): 2323−2344.

    Google Scholar

    [84] 张长厚, 邓洪菱, 李程明, 等. 2012. 燕山板内造山带中部“承德逆冲构造”的褶皱相关断裂构造模型[J]. 地学前缘, 19(5): 27−40.

    Google Scholar

    [85] 赵越, 高海龙, 张拴宏, 等. 2022. 回眸燕山运动——致敬“燕山运动”的创建者和中国地质学会的奠基人翁文灏[J]. 地质学报, 96(5): 1510−1523. doi: 10.3969/j.issn.0001-5717.2022.05.002

    CrossRef Google Scholar

    [86] 赵越, 徐刚, 张拴宏, 等. 2004. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 11(3): 319−328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    CrossRef Google Scholar

    [87] 郑亚东, 常志忠. 1985. 岩石有限应变测量及韧性剪切带[M]. 北京: 地质出版社.

    Google Scholar

    [88] 周建波, 韩杰, Simon A W, 等. 2013. 吉林—黑龙江高压变质带的初步厘定: 证据和意义[J]. 岩石学报, 29(2): 386−398.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(292) PDF downloads(30) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint