2025 Vol. 44, No. 4
Article Contents

YANG Xiaohong, ZHANG Yuhong, LI Yanqiang, WANG Yuanhao, SHAO Ji, DAI Jiawen. 2025. Geological characteristics and prospecting potential of the fluorite deposit in the Yemagou area, Qinghai. Geological Bulletin of China, 44(4): 724-733. doi: 10.12097/gbc.2024.06.024
Citation: YANG Xiaohong, ZHANG Yuhong, LI Yanqiang, WANG Yuanhao, SHAO Ji, DAI Jiawen. 2025. Geological characteristics and prospecting potential of the fluorite deposit in the Yemagou area, Qinghai. Geological Bulletin of China, 44(4): 724-733. doi: 10.12097/gbc.2024.06.024

Geological characteristics and prospecting potential of the fluorite deposit in the Yemagou area, Qinghai

More Information
  • Objective

    Fluorite and uranium deposits, due to their irreplaceability and strategic value, are both classified as national strategic mineral resources. Investigating the metallogenic conditions, mechanisms, characteristics, and prospecting potential of fluorite deposits holds significant practical and theoretical importance for locating fluorite resources and exploring the spatial and genetic associations between fluorite and volcanic-hosted uranium mineralization.

    Methods

    This study integrates field geological surveys, petrographic analysis, and regional geological synthesis to investigate the geological characteristics of fluorite deposits and their implications for prospecting volcanic-hosted uranium deposits.

    Results

    During the exploration of the Haidewula volcanic-hosted uranium deposit in Dulan County, Qinghai Province, seven economically viable fluorite ore bodies were discovered in the Yemagou area west of the mining zone. These fluorite ore bodies exhibit strong continuity, with strike lengths of 100~300 m, true thicknesses of 0.94~11.23 m, and CaF2 grades ranging from 23.02% to 48.27%. Fluorite mineralization displays multi-stage activity, primarily controlled by NW-trending fault systems. Host rocks include crypto-explosive breccia, tectonic breccia, spherulitic rhyolite, and crystal tuff, with wall-rock alterations dominated by silicification, kaolinization, carbonatization, and pyritization.

    Conclusions

    The study concludes that the deposit is a structurally controlled low-temperature hydrothermal vein-type fluorite deposit, sharing a similar metallogenic setting with volcanic-hosted uranium deposits. It is inferred that the deep and peripheral zones of the fluorite ore bodies may host substantial uranium resources. Future efforts should focus on integrated fluorite-uranium prospecting in the region, with systematic exploration expected to achieve breakthroughs.

  • 加载中
  • [1] Bai Y, Wang Z G, Wang G H, et al. 2019. Metallogenic model of fluorite deposits in Siziwangqi, Inner Mongolia—Enlightenment for prospecting of volcanic uranium deposits[J]. Metal Mine, (4): 121−128(in Chinese with English abstract).

    Google Scholar

    [2] Bi H Z, Whitney D L, Song S G, et al. 2022. HP−UHP eclogites in the East Kunlun Orogen, China: PT evidence for asymmetric suturing of the Proto−Tethys Ocean[J]. Gondwana Research, 104: 199−214. doi: 10.1016/j.gr.2021.04.008

    CrossRef Google Scholar

    [3] Cao J C. 1994. Geological characteristics and mineralization of fluorite deposits related to granite in China[J]. Geology and Exploration, (5): 1−6+13(in Chinese with English abstract).

    Google Scholar

    [4] Chen Y C, Wang D H. 2010. Classification scheme of important minerals prediction type[M]. Beijing: Geological Publishing House: 1−222(in Chinese with English abstract).

    Google Scholar

    [5] Chen G H, Pei X Z, Li R B, et al. 2020. Late Paleozoic−Early Mesozoic tectonic magmatic evolution and mineralization in the eastern part of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 27(4): 33−48(in Chinese with English abstract).

    Google Scholar

    [6] David H E. 2013. The Geological and tectonic evolution of the transantarctic mountains: A review[J]. Geological Society, London, Special Publications, 381: 7−35.

    Google Scholar

    [7] Dong Y P, He D F, Sun S S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 32−261.

    Google Scholar

    [8] He H H, Zhao S H, He X Z, et al. 2023. Application of radioactive geophysical prospecting in uranium exploration in Yemagou area, Qinghai Geological Prospecting Review, 38(3): 375−381(in Chinese with English abstract).

    Google Scholar

    [9] Isozaki. 2019. Contrasting Two Types of Orogen in Permo‐Triassic Japan: Accretionary Versus Collisional[J]. Island Arc, 6(1): 2−24.

    Google Scholar

    [10] Lei Y L, Dai J W, et al. 2021. Genesis and significance of Hyde Ula aluminium type rhyolite in the East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 36(7): 1964−1982(in Chinese with English abstract).

    Google Scholar

    [11] Li L, Sun F Y, Li B L, et al. 2018. Geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes of No. I complex from the Shitoukengde Ni−Cu sulfide deposit in the Eastern Kunlun Orogen, western China: Implications for the magmatic source, geodynamic setting and genesis[J]. Acta Geologica Sinica, 92(1): 106−126.

    Google Scholar

    [12] Li C H, Wu Y Q, Wang S C, et al. 2018. Metallogenic conditions and prospect prediction of volcanic uranium deposits in the central and southern members of the Daxing'an Mountains[J]. Uranium Geology, 42(6): 329−336(in Chinese with English abstract).

    Google Scholar

    [13] Li J, Zhang S T, Shang P Q, et al. 2020. Analysis of the current situation and strategic value of fluorite resources[J]. Mineral Protection and Utilization, 6: 62−68(in Chinese with English abstract).

    Google Scholar

    [14] Li R B. 2012. Study on Late Paleozoic−Early Mesozoic orogeny in the East Kunlun Orogenic Belt (Eastern Section)[D]. Chang 'an University Doctoral dissertation: 1−185(in Chinese with English abstract).

    Google Scholar

    [15] Li Y H. 2020. Characteristics and prospecting signs of uranium ore body in Yemagou in Qinghai Province[J] Qinghai Land Economic Strategy, 13(1): 59−61(in Chinese with English abstract).

    Google Scholar

    [16] Mo X X, Luo Z H, Deng J F, et al. 2007. Granite and crustal growth in the East Kunlun orogenic belt[J]. Geological Journal of China Universities, 13(3): 403−414(in Chinese with English abstract).

    Google Scholar

    [17] Song S G, Bi H Z, Qi S S, et al. 2018. HP−UHP metamorphic belt in theEast Kunlun Orogen: Final closure of the Proto−Tethys Ocean andformation of the Pan−North−China Continent[J]. Journal of Petrology, 59(11): 2043−2060.

    Google Scholar

    [18] Tang Y J, Liu B, Li M J, et al. 2020. Origin of Devonian mafic magmatism in the East Kunlun orogenic belt, northern Tibetan Plateau: Implications for continental exhumation[J]. Geological Magazine, 157(8): 1265−1280.

    Google Scholar

    [19] Wang J P, Shang P Q, Xiong X X. 2015. Metallogenic law of fluorite deposits in China[J]. Geology in China, 42(1): 18−32(in Chinese with English abstract).

    Google Scholar

    [20] Wang Y C, Sun F Y. 2019. The Middle−Late Silurian granitoids in the Eastern Kunlun Orogenic Belt, NW China: Petrogenesis and implications for tectonic evolution[J]. Arabian Journal of Geosciences, 12(18): 568.

    Google Scholar

    [21] Wu D H, Pan J Y, Xia F, et al. 2019. Geochemical characteristics of fluorite rare earth elements in Shangjiao uranium deposits in southern Gannan and their significance in source areas[J]. Rare Earths, 40(2): 14−27(in Chinese with English abstract).

    Google Scholar

    [22] Xu X, Liu C F, Liu W, et al. 2020. Geochronology and geochemistry of the Late Devonian–Early Carboniferous volcanic rocks in Aksu River area, Western end of the East Kunlun Orogen[J]. Geological Journal, 55(4): 3554.

    Google Scholar

    [23] Zhang H Y, Yang Y, Xing Y J, et al. 2019. Study on the relationship between uranium mineralization and fluorite and polymetallic minerals in the Weijing area of Siziwang Banner in Inner Mongolia[J]. Progress Report on Nuclear Science and Technology in China, 6: 200−205(in Chinese with English abstract).

    Google Scholar

    [24] Zhang R, Wu D H, Xia F, et al. 2023. Fluorite mineralogy, geochemical characteristics and geological significance of uranium deposits in Renhua Cotton Pit, Guangdong Province[J]. Rare Earths, 44(2): 93−109(in Chinese with English abstract).

    Google Scholar

    [25] Zhao S H et al. 2024. Uranium mine survey report in Haide Ula area, Dulan County, Qinghai Province (2021—2023)[R]. Xining: Qinghai Provincial Bureau of Nuclear Industry Geology(in Chinese with English abstract).

    Google Scholar

    [26] Zhong F J, Pan J Y, Xia F, et al. 2015. Construction and application of geological model for prospecting of uranium prospecting in volcanic rocks in China[J]. Journal of East China University of Technology: Natural Science Edition, 38(2): 135−143(in Chinese with English abstract).

    Google Scholar

    [27] Zhu K H, Dai J W, Wang K X, et al. 2022. Chronological characteristics and genesis of bituminous uranium deposits in the Hideula uranium deposit in the East Kunlun Orogenic Belt[J]. Earth Science, 47(8): 2940−2950(in Chinese with English abstract).

    Google Scholar

    [28] Zhu K H, Wang K X, Liu X D, et al. 2024. Study on the characteristics of metallogenic fluids of Hyde Ula uranium deposits in the East Kunlun orogenic belt[J]. Acta Geologica Sinica, 98(2): 467−480(in Chinese with English abstract).

    Google Scholar

    [29] Zhu P F, Cai Y Q, Guo Q Y, et al. 2018. Analysis of metallogenic geological characteristics and resource potential of uranium ore resources in China[J]. Earth Science Frontiers, 25(03): 148−158(in Chinese with English abstract).

    Google Scholar

    [30] 白彦, 王智纲, 王根厚, 等. 2019. 内蒙古四子王旗萤石矿床成矿模式——兼论对火山岩型铀矿找矿的启示[J]. 金属矿山, (04): 121−128.

    Google Scholar

    [31] 陈毓川, 王登红. 2010. 重要矿产预测类型划分方案[M]. 北京: 地质出版社, 1−222.

    Google Scholar

    [32] 陈国超, 裴先治, 李瑞保, 等. 2020. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 27(4): 33−48.

    Google Scholar

    [33] 何虎虎, 赵生辉, 何学昭, 等. 2023. 放射性物探在青海野马沟地区铀矿勘查中的应用[J]. 地质找矿论丛, 38(3): 375−381.

    Google Scholar

    [34] 雷勇亮, 戴佳文. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义[J]. 岩石学报, 36(7): 1964−1982. doi: 10.18654/1000-0569/2021.07.02

    CrossRef Google Scholar

    [35] 李长华, 吴燕清, 王世成, 等, 2018. 大兴安岭中南段火山岩型铀矿成矿条件及远景预测[J]. 铀矿地质, 42(6): 329−336.

    Google Scholar

    [36] 李敬, 张寿庭, 商朋强, 等. 2020. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 6: 62−68.

    Google Scholar

    [37] 李瑞保. 2012. 东昆仑造山带(东段)晚古生代—早中生代造山作用研究[D]. 长安大学博士学位论文: 1-185.

    Google Scholar

    [38] 李永和. 2020. 青海省野马沟铀矿体特征及找矿标志[J] 青海国土经略, 13(1): 59−61.

    Google Scholar

    [39] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414.

    Google Scholar

    [40] 王吉平, 商朋强, 熊先孝. 2015. 中国萤石矿床成矿规律[J]. 中国地质, 42(1): 18−32.

    Google Scholar

    [41] 吴德海, 潘家永, 夏菲, 等. 2019. 赣南上窖铀矿床萤石稀土元素地球化学特征及其源区意义[J]. 稀土, 40(2): 14−27.

    Google Scholar

    [42] 张海云, 杨勇, 邢亚杰, 等. 2019. 内蒙古四子王旗卫境地区铀成矿与萤石及多金属矿之间的关系研究[J]. 中国核科学技术进展报告(第六卷), 6: 200−205.

    Google Scholar

    [43] 张蕊, 吴德海, 夏菲, 等. 2023. 广东仁化棉花坑铀矿床萤石矿物学、地球化学特征及其地质意义[J]. 稀土, 44(2): 93−109.

    Google Scholar

    [44] 赵生辉等. 2024. 青海省都兰县海德乌拉地区铀矿普查报告(2021~2023年度)[R]. 西宁: 青海省核工业地质局.

    Google Scholar

    [45] 钟福军, 潘家永, 夏菲, 等, 2015. 我国火山岩型铀矿找矿预测地质模型的构建与应用[J]. 东华理工大学学报: 自然科学版, 38(2): 135−143.

    Google Scholar

    [46] 朱坤贺, 戴佳文, 王凯兴, 等. 2022. 东昆仑造山带海德乌拉铀矿床沥青铀矿年代学特征及成因[J]. 地球科学, 47(8): 2940−2950. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208020

    CrossRef Google Scholar

    [47] 朱坤贺, 王凯兴, 刘晓东, 等. 2024. 东昆仑造山带海德乌拉铀矿床成矿流体特征研究[J]. 地质学报, 98(2): 467−480.

    Google Scholar

    [48] 朱鹏飞, 蔡煜琦, 郭庆银, 等. 2018. 中国铀矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 25(03): 148−158.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(89) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint