2025 Vol. 44, No. 4
Article Contents

TENG Fei, GAO Yongbao, KOU Shaolei, ZHANG Jiangwei, LI Jinchao, LI Kan, JING Delong, TENG Yuxiang, WU Huanhuan. 2025. Petrology, geochronology and metallogenic mechanism of the Lalangmi tungsten deposit in Qinghai, the eastern part of the East Kunlun Orogen. Geological Bulletin of China, 44(4): 705-723. doi: 10.12097/gbc.2024.05.026
Citation: TENG Fei, GAO Yongbao, KOU Shaolei, ZHANG Jiangwei, LI Jinchao, LI Kan, JING Delong, TENG Yuxiang, WU Huanhuan. 2025. Petrology, geochronology and metallogenic mechanism of the Lalangmi tungsten deposit in Qinghai, the eastern part of the East Kunlun Orogen. Geological Bulletin of China, 44(4): 705-723. doi: 10.12097/gbc.2024.05.026

Petrology, geochronology and metallogenic mechanism of the Lalangmi tungsten deposit in Qinghai, the eastern part of the East Kunlun Orogen

    Fund Project: This research is jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, Grant No.2019QZKK0806), the Comprehensive Survey of Large-Scale Resource Bases in the Dahongliutan-Tianshuihai Area of West Kunlun Orogen (DD20190143), the National Key Gold Mine Survey and Evaluation Project (DD20230060), and the Survey and Evaluation of the Key Gold Mine Area in Kongquegou-Wutonggou, Xinjiang (DD20230378).
More Information
  • Author Bio: TENG Fei, born in 1988, engineer from Xi’an Center of Mineral Resources Survey with a master degree, specialize in petrology, mineralogy and ore deposits
  • Corresponding author: GAO Yongbao, born in 1982, senior researcher from Xi’an Center of Mineral Resources Survey with a doctor degree, specialize in regional metallogeny and ore deposits. 
  • Objective

    The Lalangmai tungsten deposit is a significant and the only discovery in recent tungsten exploration in the eastern part of the East Kunlun Orogen. Its timing of mineralization is similar to that of the Silurian Baiganhu tungsten−tin ore district in the western part. Understanding its metallogenic mechanism is crucial for revealing regional tungsten−tin metallogenic patterns and guiding future exploration efforts.

    Methods

    This study systematically investigates the geological characteristics of mineralization, geo−chronology , and metallogenic mechanism of the Lalangmai tungsten deposit through geological fieldwork, petrographic observations, whole−rock geochemistry, Sr−Nd isotope analysis of the whole rock, and Sm−Nd isotopic dating of garnet and scheelite.

    Results

    Tungsten mineralization at the Lalangmai deposit is primarily hosted within skarns at the contact zone between monogranite and carbonate wall−rocks. The main ore mineral is scheelite, with gangue minerals including garnet, epidote, diopside, and calcite, characteristic of skarn−type deposits. The monogranite, closely related to mineralization, contains primary muscovite and garnet. It exhibits high silicon, alkali, and aluminum content, with relatively low magnesium and iron. It is enriched in large−ion lithophile elements (LILEs) and depleted in high−field strength elements (HFSEs), and its rare earth element (REE) distribution curve is right−inclined with a distinct negative Eu anomaly, indicating typical S−type granite characteristics. Whole−rock Sr−Nd isotopic data reveal high (87Sr/86Sr)i values (0.7470 to 0.7659) and negative εNd(t) values (−8.22 to −6.05). Sm−Nd isotopic isochron dating of garnet and scheelite from the skarn gives an age of 408±4 Ma, which is consistent with the zircon U−Pb age of the monogranite (414±3 Ma) within the margin of error.

    Conclusions

    The study indicates that during the Silurian in the eastern East Kunlun Orogen, the underplating of magmatism led to partial melting of the ancient crust, forming a tungsten−rich S−type granitic magma. Following intrusion, the magma interacted with carbonate strata, resulting in metasomatic replacement and the formation of the Lalangmai skarn−type tungsten deposit.

  • 加载中
  • [1] Aideloje S O, Onyeji C O, Ugwu N C. 1998. Altered pharmacokinetics of halofantrine by an antacid, magnesium carbonate[J]. European Journal of Pharmaceutics and Biopharmaceutics, 46(3): 299−303. doi: 10.1016/S0939-6411(98)00029-0

    CrossRef Google Scholar

    [2] Chappell, B W, White, A J R. 1974. I− and S−type granites in the Lachlan fold belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83: 1−26.

    Google Scholar

    [3] Clemens J D. 2003. S−type granitic magmas−petrogenetic issues, models and evidence[J]. Earth Science Reviews, 61(1): 1−18.

    Google Scholar

    [4] Černý P, Blevin P L, Cuney M, et al. 2005. Granite−related ore deposits[J]. Economic Geology, 100: 337−370.

    Google Scholar

    [5] Chen H W, Luo Z H, Mo X X, et al. 2006. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications[J]. Acta Petrologica et Mineralogica, 25(1): 25−32 (in Chinese with English abstract).

    Google Scholar

    [6] Collins W J, Richards S W. 2008. Geodynamic significance of S−type granites in Circum−Pacific orogens[J]. Geology, 36(7): 559−562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    [7] Chen J J, Fu L B, Wei J H, et al. 2020. Proto−tethys magmatic evolution along northern from Late Silurian–Middle Devonian A−type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China[J]. Lithos, 356/357: 105304. doi: 10.1016/j.lithos.2019.105304

    CrossRef Google Scholar

    [8] Chen X D, Li B, Tang L, et al. 2022. Silver enrichment and trace element deportment in hydrothermal replacement reactions: Perspective from the Nageng Ag−polymetallic deposit, East Kunlun Orogen, NW China[J]. Ore Geology Reviews, 142: 104691. doi: 10.1016/j.oregeorev.2021.104691

    CrossRef Google Scholar

    [9] Che J J, Leng C B, Fu L B, et al. 2024. Genesis of Delong granite in East Kunlun Orogen and its implication on the evolution of Paleo−Tethys Ocean[J]. Earth Science, 49(2): 560−576 (in Chinese with English abstract).

    Google Scholar

    [10] Ding Q F, Yan W, Zhang B L, et al. 2016. Sulfur− and lead−isotope geochemistry of the Balugou Cu−Pb−Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China[J]. Journal of Earth Science, 27(5): 740−750. doi: 10.1007/s12583-015-0574-3

    CrossRef Google Scholar

    [11] Deng X H, Chen Y J, Leon B. 2018. Cassiterite U−Pb geochronology of the Kekekaerde W−Sn deposit in the Baiganhu ore field, East Kunlun Orogen, NW China: Timing and tectonic setting of mineralization[J]. Ore Geology Reviews, 100: 534−544. doi: 10.1016/j.oregeorev.2017.02.018

    CrossRef Google Scholar

    [12] Dong Y P, He D F, Sun S S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth Science Reviews, 186: 231−261.

    Google Scholar

    [13] Du Y, Xia C L, Han Z H, et al. 2023. Source analysis of metallogenic material of Shiduolong Pb−Zn deposit in the eastern part of East Kunlun: In−situ S isotope evidence from the ore[J]. Chinese Journal of Geology, 58(4): 1468−1485 (in Chinese with English abstract).

    Google Scholar

    [14] Fan X Z. 2022. Research on metallogenesis of Ag polymetallic deposits in the east segment of the East Kunlun Orogenic Belt, Qinghai Province[D]. PhD Thesis of Jilin University (in Chinese with English abstract).

    Google Scholar

    [15] Feng C Y, Li D S, Wu Z S, et al. 2010. Major types, time−space distribution and metallogeneses of polymetallic deposits in the Qimantage Metallogenic Belt, Eastern Kunlun area[J]. Northwestern Geology, 43(4): 10−17 (in Chinese with English abstract).

    Google Scholar

    [16] Feng C Y, Zeng Z L, Zhang D Q, 2011. SHRIMP zircon U−Pb and molybdenite Re−Os isotopic dating of the tungsten deposits in the Tianmenshan−Hongtaoling W−Sn orefield, southern Jiangxi Province, China, and geological implications[J]. Ore Geology Reviews, 43(1): 8−25.

    Google Scholar

    [17] Gao Y B, Li W Y, Zhang Z W, 2010. Zircon U−Pb geochronology of magmatic rocks and discussion on metallogenic epoch of the Baigan Lake−Galesai tungsten−tin ore belt in Qimantage[J]. Mineral Deposit, 29(S1): 435−436 (in Chinese).

    Google Scholar

    [18] Gao Y B, Li W Y, Li K, et al. 2012. Genesis and Chronology of Baiganhu−Jialesai W−Sn Mineralization Belt, Qimantage, East Kunlun Mountain, NW China[J]. Northwestern Geology, 45(4): 229−241 (in Chinese with English abstract).

    Google Scholar

    [19] Gao Y B. 2013. The intermediate−acid intrusive magmatism and mineralization in Qimantag, East Kunlun Mountains[D]. PhD thesis of Chang’an University (in Chinese with English abstract).

    Google Scholar

    [20] Gao Y B, Li W Y, Li Z M, et al. 2014. Geology, geochemistry, and genesis of tungsten−tin deposits in the Baiganhu District, northern Kunlun Belt, Northwestern China[J]. Economic Geology, 109(6): 1787−1799. doi: 10.2113/econgeo.109.6.1787

    CrossRef Google Scholar

    [21] Gao Y B, Keiko H, Leon B, et al. 2023. Origin of Silurian granite in the Baiganhu field, Eastern Kulun Terrane, NW China: Implications for the tectonic setting of Sn−W mineralization[J]. Ore Geology Reviews, 163: 105749. doi: 10.1016/j.oregeorev.2023.105749

    CrossRef Google Scholar

    [22] Guo X Z, Jia Q Z, Lv X B, et al. 2020. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr−Nd−Hf isotopes of the Xiaowolong skarn Sn deposit[J]. Ore Geology Reviews, 118: 103370. doi: 10.1016/j.oregeorev.2020.103370

    CrossRef Google Scholar

    [23] Jiang S Y, Zhao K D, Jiang H, et al. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin 65(33): 3730 − 3745 (in Chinese with English abstract).

    Google Scholar

    [24] Kong H L, Li J C, Jia Q Z, et al. 2019. Zircon U−Pb dating and geochemistry of the tonalite from Lalangmai tungsten−polymetallic ore district in East Kunlun, Qinghai Province, with implications for prospecting[J]. Chinese Journal of Geolog, 54(2): 590−607 (in Chinese with English abstract).

    Google Scholar

    [25] Li H Q, Xie C F, Chang H L, et al. 1998. Geochronology of metallogenesis of nonferrous and precious metal deposits in Northern Xinjiang [M]. Beijing: Geological Publishing House, 10−25. (in Chinese).

    Google Scholar

    [26] Li G C, Feng C Y, Wang R J, et al. 2012. SIMS zircon U−Pb age, petrochemistry and tectonic implications of granitoids in Northeastern Baiganhue W−Sn orefield, Xinjiang[J]. Acta Geoscientica Sinica, (2): 216−226 (in Chinese with English abstract).

    Google Scholar

    [27] Li D X, Feng C Y, Zhou A S, et al. 2013. Geological characteristics and mineralization−metasomatite classification of superlarge Baiganhu tungsten−tin orefield in western Qimantage, East Kunlun Mountains[J]. Mineral Deposits, 32(1): 37−54 (in Chinese with English abstract).

    Google Scholar

    [28] Li R B, Pei X Z, Li Z C, et al. 2013. Regional tectonic transformation in East Kunlun orogenic belt in early Paleozoic: Constraints from the geochronology and geochemistry of Helegangnaren alkali−feldspar granite[J]. Acta Geologica Sinica (English Edition), 87(2): 333−345. doi: 10.1111/1755-6724.12054

    CrossRef Google Scholar

    [29] Li Y G, Wang S S, Liu M W, et al. 2015. U−Pb dating study of baddeleyite by LA−ICP−MS: Technique and application[J]. Acta Geologica Sinica, 89(12): 2400−2418 (in Chinese with English abstract).

    Google Scholar

    [30] Li J D, Li X F. 2020. Research progress in metallogenesis of skarn−type tungsten deposits[J]. Mineral Deposits, 39(2): 256−272 (in Chinese with English abstract).

    Google Scholar

    [31] Li C H, Zhang H F, Chen An P. 2022. Early Paleozoic metamorphic evolution of the East Kunlun Orogen recorded in Langmuri garnet−amphibolite. Acta Petrologica Sinica, 38(3): 639−654 (in Chinese with English abstract).

    Google Scholar

    [32] Li W S, Ni P, Pan J Y, et al. 2023. The genetic association between vein and skarn type tungsten mineralization in the Yaogangxian tungsten deposit, South China: Constraints from LA−ICP−MS analysis of individual fluid inclusion[J]. Ore Geology Reviews, 159: 105544. doi: 10.1016/j.oregeorev.2023.105544

    CrossRef Google Scholar

    [33] Liu B, Ma C Q, Zhang J Y, et al. 2012. Petrogenesis of Early Devonianintrusive rocks in the east part of Eastern Kunlun Orogen andimplication for Early Palaeozoic orogenic processes. Acta PetrologicaSinica, 28(6): 1785−1807 (in Chinese with English abstract).

    Google Scholar

    [34] Lu L, Wu Z, Hu D G. 2010. Zircon U−Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains[J]. Acta Petrologica Sinica, 26(4): 1150−1158 (in Chinese with English abstract).

    Google Scholar

    [35] Ludwig K R. 2003. A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Berkeley:70.

    Google Scholar

    [36] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643.

    Google Scholar

    [37] Mao J W, Qu Y H, Song S, et al. 2019. Geology and metallogeny of tungsten and tin deposits in China[J]. Society of Economic Geologists Special Publications, 22: 411−482.

    Google Scholar

    [38] Mao J W, Song S W, Liu P, et al. 2023. Current progress and development trend of the research on tin deposits. Acta Petrologica Sinica, 39(5): 1233−1240 (in Chinese with English abstract).

    Google Scholar

    [39] Mao Z H, Liu J J, Mao J W, et al. 2015. Geochronology andgeochemistry of granitoids related to the giant Dahutang tungstendeposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization[J]. GondwanaResearch, 28(2): 816−836.

    Google Scholar

    [40] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4): 215−224.

    Google Scholar

    [41] Miranda A C R, Beaudoin G, Rottier B. 2022. Scheelite chemistry from skarn systems: implications for ore−forming processes and mineral exploration[J]. Mineralium Deposita, 57: 1469−1497.

    Google Scholar

    [42] Namkha N. 2021. Silurian−Devonian intrusive magmatic rock and ore−bearing potential in the East Kunlun orogenic belt, Qinghai Province, China[D]. PhD Thesis of Chang’an University (in Chinese with English abstract).

    Google Scholar

    [43] Pu W, Zhao K D, Ling H F, et al. 2004. High precision Nd Isotope measurement by triton TI mass spectrometry[J]. Acta Geoscientica Sinica, (2): 271−274 (in Chinese with English abstract).

    Google Scholar

    [44] Pu W, Gao J F, Zhao K D, et al. 2005. Separation method of Rb−Sr, Sm−Nd using DCTA and HIBA[J]. Journal of Nanjing University (Natural Sciences), 41(4): 445−450 (in Chinese with English abstract).

    Google Scholar

    [45] Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. Essex: Longman Scientific & Technical.

    Google Scholar

    [46] Sheng J F, Liu L J, Wang D H, et al. 2015. A preliminary review ofmetallogenicregularity of tungsten deposits in China[J]. ActaGeologica Sinica (English Edition), 89(4): 1359−1374.

    Google Scholar

    [47] Sichuan Metallurgical Geological Exploration Bureau. 2015. Preliminary exploration report on the Lalangmai gold and polymetallic deposits, Dulan County, Qinghai Province (2013–2014) [R].

    Google Scholar

    [48] Song Z B, Zhang Y L, Jia Q Z, et al. 2014. U–Pb age of Yemaquan deep Variscan granodiorite in the Qimantage area, East Kunlun, and its geological significance[J]. Geoscience, 28(6): 1161-1169 (in Chinese with English abstract).

    Google Scholar

    [49] Sun F Y, Li B L, Ding Q F, et al. 2009. Study on the major prospecting problem in East Kunlun Metallogeny Belt[R]. Geological Survey Research Institute of Jilin University.

    Google Scholar

    [50] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[M]. Geological Society, London, Special Publications, 42: 313–345.

    Google Scholar

    [51] Wang B Z, Wang Q, Wang C T, et al. 2024. Petrogenesis and geologicalsignificance of Devonian syenites in the Dagela Area, East Kunlun[J]. Geotectonica et Metallogenia, 48(1): 61−81.

    Google Scholar

    [52] Wang F L. 2023. Metallogenic mechanism and prognosis based oncomprehensive information for gold deposits in the Asiha−Walegaarea, eastern segment of the East Kunlun Orogen[D]. PhD thesis ofChina University of Geosciences (Wuhan) (in Chinese with Englishabstract).

    Google Scholar

    [53] Wang G, Sun F Y, Li B L, et al. 2014. Petrography, zircon U−Pb geochronology and geochemistry of the mafic−ultramafic intrusion in Xiarihamu Cu−Ni deposit from East Kunlun, with implication for geodynamic setting. Earth Science Frontiers, 21(6): 381−401 (in Chinese with English abstract).

    Google Scholar

    [54] Wang X S, Jones A E W, Hu R Z, et al. 2021. The role of fluorine ingranite−related hydrothermal tungsten ore genesis: Results ofexperiments and modeling[J]. Geochimica et Cosmochimica Acta, 292(1): 170−187.

    Google Scholar

    [55] Wang Z Z, Han B F, Feng C Y, et al. 2014. Geochronology, geochemistry and tectonic significance of granites in Baiganhu area, Xinjiang[J]. Acta Petrologica Mineralogica, 33(4): 597−616 (in Chinese with English abstract).

    Google Scholar

    [56] Wu K Y, Liu B, Wu Q H, et al. 2023. Trace element geochemistry, oxygen isotope and U−Pb geochronology of multistage scheelite: Implications for W−mineralization and fluid evolution of Shizhuyuan W−Sn deposit, South China[J]. Journal of geochemical exploration, 248: 107192. doi: 10.1016/j.gexplo.2023.107192

    CrossRef Google Scholar

    [57] Xu Q L. 2014. Study on metallogenesis of porphyry deposits in Eastern Kunlun Orogenic belt, Qinghai Province[D]. PhD thesis of Jilin University (in Chinese with English abstract).

    Google Scholar

    [58] Xu L X, Xu H, Xu J, et al. 2017. Research status and progress of skarn deposits[J]. China Mining Magazine, 26(5): 154−161 (in Chinese with English abstract).

    Google Scholar

    [59] Yao L, LÜ Z C, Zhao C S. 2016. Geochronological study of granit−oids from the Niukutou and B section of the Kaerqueka deposits, Qimantag area, Qinghai Province: Implications for Devonian magmatism and mineralization[J]. Geological Bulletin of China, 35(7): 1158−1169 (in Chinese with English abstract).

    Google Scholar

    [60] Yuan S D, Anthony W J, Rolf L R, et al. 2019. Protolith−related thermal controls on the decoupling of Sn and W in Sn−W metallogenic provinces: Insights from the Nanling region, China[J]. Economic Geology, 114: 1005−1012. doi: 10.5382/econgeo.4669

    CrossRef Google Scholar

    [61] Yuan S D, Zhao P L, Liu M, 2020. Some problems involving in petrogenesis and metallogenesis of granite−related tin deposits[J]. Mineral Deposit, 39(4): 607−618 (in Chinese with English abstract).

    Google Scholar

    [62] Zhang J Y, Ma C Q, Xiong F H, et al. 2014. Early Paleozoic high Mg diorite−granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break−off[J]. Lithos, 210/211: 129−146. doi: 10.1016/j.lithos.2014.10.003

    CrossRef Google Scholar

    [63] Zhang J Y, Lei H L, Ma C Q. 2021. Silurian−Devonian granites and associated intermediate−mafic rocks along the eastern Kunlun Orogen, western China: Evidence for a prolonged post−collisional lithospheric extension[J]. Gondwana Research, 89: 131−146.

    Google Scholar

    [64] Zhang W Z, Xia C L, Song Q, et al. 2022. Genesis of the ZhamashanCu−Pb−Zn Polymetallic Deposit in the Eastern Section of East Kunlun: Indications from Fluid Inclusions and Stable Isotopes[J]. XinjiangGeology, 40(2): 211−217.

    Google Scholar

    [65] Zhao H B, Zhang Y, Liu L, et al. 2021. Hydrothermal alteration processesin the giant Dahutang tungsten deposit, South China: Implicationsfromlitho−geochemistry and mass balance calculation[J]. ChinaGeology, 4(2): 230−244.

    Google Scholar

    [66] Zhao Z Z, Liu C, Guo N X, et al. 2018. Temporal and spatial relationships of granitic magmatism and W mineralization: Insights from the Xingguo orefield, South China[J]. Ore Geology Reviews, 95: 945−973.

    Google Scholar

    [67] Zheng Z, Deng X H, Chen H J, et al. 2016. Fluid sources and metallogenesis in the Baiganhu W−Sn deposit, East Kunlun, NW China: Insights from chemical and boron isotopic compositions of tourmaline[J]. Ore Geology Reviews, 72(1): 1129−1142.

    Google Scholar

    [68] Zheng Z, Chen Y J, Deng X H, et al. 2016. Muscovite 40Ar/39Ar dating ofthe BaiganhuW−Sn orefield, Qimantag, East Kunlun Mountains, andits geological implications[J]. Geology in China, (4): 1341−1352 (inChinese with English abstract).

    Google Scholar

    [69] Zhong S H, Li S Z, Feng C Y, et al. 2021. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524

    CrossRef Google Scholar

    [70] Zhou J H, Feng C Y, Li D X, et al. 2015. Petrology, geochronology andgeochemistry of metallogenetic granite in Baiganhu W−Sn deposit, East Kunlun[J]. Acta Petrologica Sinica, 31(8): 2277−2293.

    Google Scholar

    [71] Zhou J H, Feng C Y, Li D X, et al. 2016. Geological, geochemical, and geochronological characteristics of Caledonian W−Sn mineralization in the Baiganhu orefield, southeastern Xinjiang, China[J]. Ore Geology Reviews, 75: 125−149. doi: 10.1016/j.oregeorev.2015.12.009

    CrossRef Google Scholar

    [72] Zhou J H, Feng C Y, Li D X. 2017. Geochemistry of the garnets in the Baiganhu W–Sn orefield, NW China[J]. Ore Geology Reviews, 82: 70−92.

    Google Scholar

    [73] Zhu J, Tan S C, Yang J Y, et al. 2024. What controls Sn−W mineralization in granite batholith: A case study from the world−class Dulong Sn−Zn polymetallic ore deposit of SW China[J]. Ore Geology Reviews, 166: 105968. doi: 10.1016/j.oregeorev.2024.105968

    CrossRef Google Scholar

    [74] Zhu Y X, Wang L X, Ma C Q, et al. 2022. Petrogenesis and tectonic implication of the Late Triassic A1−type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412: 106595.

    Google Scholar

    [75] 陈加杰, 冷成彪, 付乐兵, 等. 2024. 东昆仑德龙花岗岩成因及对古特提斯洋演化的制约[J]. 地球科学, 49(2): 560−571.

    Google Scholar

    [76] 谌宏伟, 罗照华, 莫宣学, 等. 2006. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学, 25(1): 25−32.

    Google Scholar

    [77] 范兴竹. 2022. 青海省东昆仑东段银多金属矿床成矿作用研究[D]. 吉林大学博士学位论文.

    Google Scholar

    [78] 杜瑜, 夏楚林, 韩芝弘, 等. 2023. 东昆仑东段什多龙铅锌矿成矿物质来源分析: 来自矿石原位S同位素证据[J]. 地质科学, 58(4): 1468−1485. doi: 10.12017/dzkx.2023.080

    CrossRef Google Scholar

    [79] 丰成友, 李国臣, 李大新, 等. 2013. 新疆祁漫塔格柯可卡尔德钨锡矿床控矿构造及40Ar/39Ar年代学研究[J]. 矿床地质, 32(1): 207−216. doi: 10.3969/j.issn.0258-7106.2013.01.016

    CrossRef Google Scholar

    [80] 高永宝, 李文渊, 张照伟. 2010. 祁漫塔格白干湖−戛勒赛钨锡矿带岩浆岩锆石U−Pb定年及成矿时代探讨[J]. 矿床地质, 29(S1): 435−436.

    Google Scholar

    [81] 高永宝. 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 长安大学博士学位论文.

    Google Scholar

    [82] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    Google Scholar

    [83] 蒋少涌, 赵葵东, 姜海, 等. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 65(33): 3730−3745.

    Google Scholar

    [84] 孔会磊, 李金超, 贾群子, 等. 2019. 青海东昆仑拉浪麦钨多金属矿区英云闪长岩锆石U−Pb测年、岩石地球化学及找矿意义[J]. 地质科学, 54(2): 590−607. doi: 10.12017/dzkx.2019.036

    CrossRef Google Scholar

    [85] 李华芹, 谢才富, 常海亮, 等. 1998. 新疆北部有色贵金属矿床成矿作用年代学[M]. 北京: 地质出版社: 10−25.

    Google Scholar

    [86] 李国臣, 丰成友, 王瑞江, 等. 2012. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U−Pb年龄、地球化学特征及构造意义[J]. 地球学报, 33(2): 216−226.

    Google Scholar

    [87] 李大新, 丰成友, 周安顺, 等. 2013. 东昆仑祁漫塔格西段白干湖超大型钨锡矿田地质特征及其矿化交代岩分类[J]. 矿床地质, 32(1): 37−54. doi: 10.3969/j.issn.0258-7106.2013.01.003

    CrossRef Google Scholar

    [88] 李艳广, 汪双双, 刘民武, 等. 2015. 斜锆石LA−ICP−MS U−Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    CrossRef Google Scholar

    [89] 李佳黛, 李晓峰. 2020. 矽卡岩型钨矿床成矿作用研究进展[J]. 现代地质, 39(2): 256−272.

    Google Scholar

    [90] 李诚浩, 张宏福, 陈安平. 2022. 东昆仑早古生代变质演化: 来自浪木日石榴斜长角闪岩的记录[J]. 岩石学报, 38(3): 1242−1255.

    Google Scholar

    [91] 刘彬, 马昌前, 张金阳, 等. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 28(6): 1785−1807.

    Google Scholar

    [92] 陆露, 吴珍汉, 胡道功, 等. 2010. 东昆仑牦牛山组流纹岩锆石U−Pb年龄及构造意义[J]. 岩石学报, 26(4): 1150−1158.

    Google Scholar

    [93] 毛景文, 宋世伟, 刘鹏, 等. 2023. 锡矿床研究现状及发展趋势[J]. 岩石学报, 39(5): 1233−1240. doi: 10.18654/1000-0569/2023.05.01

    CrossRef Google Scholar

    [94] 南卡俄吾. 2021. 青海东昆仑构造带志留纪–泥盆纪侵入岩浆活动及含矿性研究[D]. 长安大学博士学位论文.

    Google Scholar

    [95] 濮巍, 赵葵东, 凌洪飞, 等. 2004. 新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定[J]. 地球学报, 25(2): 271−274. doi: 10.3321/j.issn:1006-3021.2004.02.033

    CrossRef Google Scholar

    [96] 濮巍, 高剑峰, 赵葵东, 等. 2005. 利用 DCTA 和 HIBA 快速有效分离 Rb−Sr、Sm−Nd 的方法[J]. 南京大学学报(自然科学), 41(4): 445−450.

    Google Scholar

    [97] 四川省冶金地质勘查局. 2015. 青海省都兰县拉浪麦金多金属矿预查2013-2014年工作报告[R].

    Google Scholar

    [98] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J].现代地质, 28(6): 1161−1169.

    Google Scholar

    [99] 孙丰月, 李碧乐, 丁清峰, 等. 2009. 东昆仑成矿带重大找矿疑难问题研究[R]. 吉林大学地质调查研究院.

    Google Scholar

    [100] 王增振, 韩宝福, 丰成友, 等. 2014. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 33(4): 597−616. doi: 10.3969/j.issn.1000-6524.2014.04.001

    CrossRef Google Scholar

    [101] 王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质−超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.

    Google Scholar

    [102] 王凤林. 2023. 东昆仑东段阿斯哈—瓦勒尕地区金成矿机制研究及综合信息成矿预测[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [103] 王秉璋, 王强, 王春涛, 等. 2024. 东昆仑大格勒泥盆纪正长岩岩石成因和地质意义[J]. 大地构造与成矿学, 48(1): 61−81.

    Google Scholar

    [104] 许庆林. 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究[D]. 吉林大学博士学位论文.

    Google Scholar

    [105] 许凌霄, 许虹, 徐净, 等. 2017. 矽卡岩矿床研究现状与进展[J]. 中国矿业, 26(5): 154−161. doi: 10.3969/j.issn.1004-4051.2017.05.029

    CrossRef Google Scholar

    [106] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS 锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011

    CrossRef Google Scholar

    [107] 袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论[J]. 矿床地质, 39(4): 607−618.

    Google Scholar

    [108] 张文昭, 夏楚林, 宋芊, 等. 2022. 东昆仑东段扎麻山铜铅锌多金属矿床成因研究——来自流体包裹体及稳定同位素的指示[J]. 新疆地质, 40(2): 211−217.

    Google Scholar

    [109] 郑震, 陈衍景, 邓小华, 等. 2016. 东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J]. 中国地质, 43(4): 1341−1352. doi: 10.12029/gc20160419

    CrossRef Google Scholar

    [110] 周建厚, 丰成友, 李大新, 等. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 31(8): 2277−2293.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(7)

Article Metrics

Article views(103) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint