2025 Vol. 44, No. 6
Article Contents

LIN Xu, CHEN Xiaokang, LIU Jing, WU Zhonghai, HU Chengwei, WU Ruitong, DONG Yanyu, QIN Lishuang, XIANG Runzhi, AN Zhengyang, LU Hang. 2025. When was the Yangtze River formed?. Geological Bulletin of China, 44(6): 949-981. doi: 10.12097/gbc.2024.05.019
Citation: LIN Xu, CHEN Xiaokang, LIU Jing, WU Zhonghai, HU Chengwei, WU Ruitong, DONG Yanyu, QIN Lishuang, XIANG Runzhi, AN Zhengyang, LU Hang. 2025. When was the Yangtze River formed?. Geological Bulletin of China, 44(6): 949-981. doi: 10.12097/gbc.2024.05.019

When was the Yangtze River formed?

    Fund Project: National Natural Science Foundation of China (No.41972212) and Hubei Province Chutian Scholar Talent Program (No.8210403)
More Information
  • Author Bio: LIN Xu, male, born in 1984, Ph.D, associate professor, mainly engaged in the research on uplift of the Xizang Plateau and the origin of large rivers in China; E−mail: hanwuji-life@163.com
  • Corresponding author: DONG Yanyu, male, born in 1986, master, senior engineer, mainly specializing in Quaternary geology; E-mail: 76000932@qq.com 
  • Objective

    The Yangtze River, as the longest river in Asia, serves as a direct link connecting the Xizang Plateau and the Pacific Ocean. Delving into the formation and evolution of the Yangtze River can provide invaluable insights into the geological structure and climate changes occurring in East Asia. However, there is currently no consensus regarding the precise timing of its formation or the specific details of its evolutionary process.

    Methods

    To address this research gap, we conducted a comprehensive review, analysis, and comparison of existing sedimentological and geochemical data on the development and evolution of the Yangtze River Basin. Our study begins by examining the context of tectonic evolution and climate change, and subsequently delves into a discussion on the evolutionary process of the Yangtze River.

    Results

    The results of our analysis reveal the followings: ① During the Late Mesozoic, a large river system formed in the Sichuan Basin that flowed southward. Additionally, tectonic subsidence during this period turned the Jianghan Basin and Wangjiang Basin into regional drainage centers. As a result, the upper, middle, and lower reaches of the Yangtze River Basin experienced segmented evolution. ② Between 60 Ma and 35 Ma, significant subsidence occurred in the Jianghan Basin, Wangjiang Basin, South Yellow Sea Basin, and East China Sea Basin, which continued to function as local drainage centers. During this time, the Jianghan Basin developed extensive salt lake deposits, suggesting the absence of major inflowing or outflowing rivers. However, the Paleo−Red River flowed into the South China Sea, marking the early phase of the evolution of the proto−Yangtze River during this time. ③ Approximately 20 Ma, the Xizang Plateau experienced vertical uplift and lateral extrusion, triggering extensive exhumation processes in the Yungui Plateau. As a result, the Paleo−Red River, which previously flowed southward, disintegrated entirely. In the Middle Miocene, the Three Gorges of the Yangtze River underwent significant incision, leading to the deposition of sedimentary material from the upstream Yangtze River in the Jianghan Basin, Nanjing area, and East China Sea Basin. Consequently, the Yangtze River, with a length exceeding 6000 km, emerged during the Miocene epoch, marking the onset of the evolutionary stage of the Yangtze River. ④ During the Pliocene, the downstream areas of rivers such as the Jinsha River, Yalong River, and Dadu River were affected by heavy rainfall to appear the large−scale landslides, leading to the formation of extensive Paleo−Xigeda Lake. Additionally, the formation of thick gravel layers was observed in various regions, including the Jianchuan Basin, Dadu River and Minjiang River basins, Wangjiang Basin, and the Nanjing area. The wide canyon formed in the Three Gorges region of the Yangtze River. These geological changes suggest a substantial enhancement of the hydraulic transport capacity of the Yangtze River compared to the Middle Miocene. During the Pliocene, the South China region exhibited a similar mountain−river−sea distribution pattern as is observed today, representing a developmental stage of the Yangtze River. ⑤ Between 2 and 1 Ma, Paleo−Xigeda Lake completely disintegrated, resulting in significant reorganization of the main and tributary streams in the Yangtze River. This process brought about notable changes in sediment sources in both the Jianghan Basin and the Yangtze River Delta. Subsequently, a new phase of rapid incision took place in the upstream Yangtze River around 0.7~0.5 Ma, leading to the reestablishment of river terraces in the Jinsha River, Dadu River, and the Three Gorges region. During the middle Pleistocene, as the East China Sea and Yellow Sea became submerged by seawater, the continued incision in the upstream Yangtze River combined with the influence of the seawater in the lower reaches resulted in a significant reduction in the topographic difference between the upstream and downstream erosion levels of the river. Consequently, there was a shift toward deposition processes in the lower reaches, leading to the gradual development of a deltaic landform. These changes indicate the entrance of the Yangtze River Basin into a mature stage during the Quaternary.

    Conclusions

    The development of fluvial landforms in the Yangtze River Basin was influenced by the interplay of tectonic processes, climate change, and local stochastic effects such as landslides, particularly during the uplift processes of the Xizang Plateau and the surrounding mountains.

  • 加载中
  • [1] Ashworth P J, Lewin J. 2012. How do big rivers come to be different?[J]. Earth−Science Reviews, 114(1/2): 84−107.

    Google Scholar

    [2] Avise J C. 1989. Gene trees and organismal histories: a phylogenetic approach to population biology[J]. Evolution, 43(6): 1192−1208. doi: 10.2307/2409356

    CrossRef Google Scholar

    [3] Barbour G B. 1936. Physiographic history of the Yangtze[J]. The Geographical Journal, 87(1): 17−32. doi: 10.2307/1786198

    CrossRef Google Scholar

    [4] Banner J L. 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy[J]. Earth−Science Reviews, 65(3/4): 141−194. doi: 10.1016/S0012-8252(03)00086-2

    CrossRef Google Scholar

    [5] Bernet M, Garver J I. 2005. Fission−track analysis of detrital zircon[J]. Reviews in Mineralogy and Geochemistry, 58(1): 205−237. doi: 10.2138/rmg.2005.58.8

    CrossRef Google Scholar

    [6] Best J. 2019. Anthropogenic stresses on the world’s big rivers[J]. Nature Geoscience, 12(1): 7−21. doi: 10.1038/s41561-018-0262-x

    CrossRef Google Scholar

    [7] Blair T C, McPherson J G. 1999. Grain−size and textural classification of coarse sedimentary particles[J]. Journal of Sedimentary Research, 69(1): 6−19. doi: 10.2110/jsr.69.6

    CrossRef Google Scholar

    [8] Blum M D, Törnqvist T E. 2000. Fluvial responses to climate and sea−level change: a review and look forward[J]. Sedimentology, 47: 2−48. doi: 10.1046/j.1365-3091.2000.00008.x

    CrossRef Google Scholar

    [9] Blum M D. 2022. Large river systems and climate change[M]. Large Rivers: Geomorphology and Management, Second Edition: 916−957.

    Google Scholar

    [10] Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India−Asia collision: rivers draining southwards[J]. Geomorphology, 22(3/4): 285−312. doi: 10.1016/S0169-555X(97)00082-2

    CrossRef Google Scholar

    [11] Brown R A, Pasternack G B. 2019. How to build a digital river[J]. Earth−Science Reviews, 194: 283−305. doi: 10.1016/j.earscirev.2019.04.028

    CrossRef Google Scholar

    [12] Cao K, Wang G, Leloup P H, et al. 2019. Oligocene−Early Miocene topographic relief generation of southeastern Xizang triggered by thrusting[J]. Tectonics, 38(1): 374−391. doi: 10.1029/2017TC004832

    CrossRef Google Scholar

    [13] Cao K, Tian Y, van der Beek P, et al. 2022. Southwestward growth of plateau surfaces in eastern Xizang[J]. Earth−Science Reviews, 232: 104160.

    Google Scholar

    [14] Cao L, Shao L, van Hinsbergen D J J, et al. 2023. Provenance and evolution of East Asian large rivers recorded in the East and South China Seas: A review[J]. Geological Society of America Bulletin, 135(11/12): 2723−2752.

    Google Scholar

    [15] Carter A, Bristow C S. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau Basin, eastern Thailand[J]. Basin Research, 15(2): 271−285. doi: 10.1046/j.1365-2117.2003.00201.x

    CrossRef Google Scholar

    [16] Caracciolo L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth−Science Reviews, 209: 103226. doi: 10.1016/j.earscirev.2020.103226

    CrossRef Google Scholar

    [17] Chen Y, Yan M, Fang X, et al. 2017. Detrital zircon U–Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River[J]. Earth and Planetary Science Letters, 476: 22−33. doi: 10.1016/j.jpgl.2017.07.025

    CrossRef Google Scholar

    [18] Chen Z, Xu K, Watanabe M. 2022. Dynamic hydrology and geomorphology of the Yangtze River[M]. Large Rivers: Geomorphology and Management, Second Edition: 687−703.

    Google Scholar

    [19] Chen F, Xue G, Wang Y, et al. 2023. Evolution of the Yangtze River and its biodiversity[J]. The Innovation, 4(3): 1−3.

    Google Scholar

    [20] Cheng Y, Li X, Shu J, et al. 2019. Sedimentary evolution and transgressions of the western Subei Basin in Eastern China since the Late Pliocene[J]. Acta Geologica Sinica−English Edition, 93(1): 155−166. doi: 10.1111/1755-6724.13774

    CrossRef Google Scholar

    [21] Cheng H, Suo Y, Ding X, et al. 2023. Neogene morphotectonic evolution of the East Asian Continental Shelf[J]. Geomorphology, 445: 108975.

    Google Scholar

    [22] Clark M K, Schoenbohm L M, Royden L H, et al. 2004. Surface uplift, tectonics, and erosion of eastern Xizang from large−scale drainage patterns[J]. Tectonics, 23(1): 1−24.

    Google Scholar

    [23] Clark M K, House M A, Royden L H, et al. 2005. Late Cenozoic uplift of southeastern Xizang[J]. Geology, 33(6): 525−528. doi: 10.1130/G21265.1

    CrossRef Google Scholar

    [24] Clift P D, Layne G D, Blusztajn J. 2004. Marine sedimentary evidence for monsoon strengthening, Xizang uplift and drainage evolution in East Asia[J]. Continent−Ocean Interactions in the East Asian Marginal Seas, Geophys. Monogr. Ser., 149: 255−282.

    Google Scholar

    [25] Clift P D, Long H V, Hinton R, et al. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River−Song Hong sediments[J]. Geochemistry, Geophysics, Geosystems, 9(4): 1−29.

    Google Scholar

    [26] Clift P D, Carter A, Wysocka A, et al. 2020. A Late Eocene−Oligocene through−flowing river between the Upper Yangtze and South China Sea[J]. Geochemistry, Geophysics, Geosystems, 21(7): e2020GC009046.

    Google Scholar

    [27] Cui Y, Shao L, Li Z X, et al. 2024. Early Cenozoic drainage network and paleogeographic evolution within the SE Xizang Plateau and its surrounding area: Synthetic constraints from onshore−offshore geological dataset[J]. Earth−Science Reviews, 258: 104932. doi: 10.1016/j.earscirev.2024.104932

    CrossRef Google Scholar

    [28] Dai S Z. 1997. Petroleum geology of Jianghan Saline Basin[M]. Beijing: Petroleum Industry Publishing House (in Chinese).

    Google Scholar

    [29] Demoulin A, Mather A, Whittaker A. 2017. Fluvial archives, a valuable record of vertical crustal deformation[J]. Quaternary Science Reviews, 166: 10−37. doi: 10.1016/j.quascirev.2016.11.011

    CrossRef Google Scholar

    [30] Deng B. 2013. Cenozoic basin−mountain structure and hydrocarbon distribution in the Sichuan Basin [D]. Doctoral Dissertation of Chengdu University of Technology (in Chinese with English abstract).

    Google Scholar

    [31] Deng J, Wang Q, Li G, et al. 2014. Cenozoic tectono−magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth−Science Reviews, 138: 268−299. doi: 10.1016/j.earscirev.2014.05.015

    CrossRef Google Scholar

    [32] Deng B, Chew D, Jiang L, et al. 2018. Heavy mineral analysis and detrital U−Pb ages of the intracontinental Paleo−Yangzte basin: Implications for a transcontinental source−to−sink system during Late Cretaceous time[J]. Geological Society of America Bulletin, 130(11/12): 2087−2109. doi: 10.1130/B32037.1

    CrossRef Google Scholar

    [33] Deng B, Chew D, Mark C, et al. 2021. Late Cenozoic drainage reorganization of the paleo−Yangtze river constrained by multi−proxy provenance analysis of the Paleo−lake Xigeda[J]. Geological Society of America Bulletin, 133(1/2): 199−211.

    Google Scholar

    [34] Deng T, Hu X, Chew D, et al. 2023. Early Jurassic initiation of the modern drainage pattern of the Dabie orogen (East China) revealed by a multi-proxy provenance approach[J]. Basin Research, 36(1): e12834.

    Google Scholar

    [35] Deiner K, Altermatt F. 2014. Transport distance of invertebrate environmental DNA in a natural river[J]. PloS One, 9(2): 1−8.

    Google Scholar

    [36] Ding R, Chang Y, Min K, et al. 2021. Post−orogenic topographic evolution of the Dabie orogen, Eastern China: Insights from apatite and zircon (U−Th)/He thermochronology[J]. Geomorphology, 374: 107487. doi: 10.1016/j.geomorph.2020.107487

    CrossRef Google Scholar

    [37] Ding L, Kapp P, Cai F, et al. 2022. Timing and mechanisms of Xizang Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 652−667.

    Google Scholar

    [38] Dong Y, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1−40. doi: 10.1016/j.gr.2015.06.009

    CrossRef Google Scholar

    [39] Dong Y, Shi X, Sun S, et al. 2022. Co−evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China[J]. Geosystems and Geoenvironment, 1(2): 100032. doi: 10.1016/j.geogeo.2022.100032

    CrossRef Google Scholar

    [40] Enkelmann E, Ratschbacher L, Jonckheere R, et al. 2006. Cenozoic exhumation and deformation of northeastern Xizang and the Qinling: Is Xizang lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 118(5/6): 651−671. doi: 10.1130/B25805.1

    CrossRef Google Scholar

    [41] Fan D, Li C, Yokoyama K, et al. 2005. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run−through time[J]. Science in China: Earth Sciences, 48: 1718−1727.

    Google Scholar

    [42] Fan D D, Li C X. 2008. Timing of the Yangtze initiation draining the Xizang Plateau throughout to the East China Sea: A review[J]. Frontiers of Earth Science in China, 2: 302−313.

    Google Scholar

    [43] Farnsworth A, Lunt D J, Robinson S A, et al. 2019. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 5(10): eaax1697. doi: 10.1126/sciadv.aax1697

    CrossRef Google Scholar

    [44] Fang X, Guo Z, Jiang D, et al. 2022. No monsoon−dominated climate in northern subtropical Asia before 35 Ma[J]. Global and Planetary Change, 218: 103970. doi: 10.1016/j.gloplacha.2022.103970

    CrossRef Google Scholar

    [45] Feng Y, Song C, He P, et al. 2021. Detrital zircon U−Pb geochronology of the Jianchuan Basin, southeastern Xizang Plateau, and its implications for tectonic and paleodrainage evolution[J]. Terra Nova, 33(6): 560−572. doi: 10.1111/ter.12548

    CrossRef Google Scholar

    [46] Feng Q, Qiu N, Wu H, et al. 2023. Thermo−kinematic constraints on restoration of the Eastern Sichuan fold−and−thrust belt, South China[J]. Tectonics, 42(9): e2022TC007630. doi: 10.1029/2022TC007630

    CrossRef Google Scholar

    [47] Finnegan N J, Sklar L S, Fuller T K. 2007. Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel[J]. Journal of Geophysical Research: Earth Surface, 112(F3): 1−17.

    Google Scholar

    [48] Fu X, Zhu W, Geng J, et al. 2021. The present−day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 205: 104600. doi: 10.1016/j.jseaes.2020.104600

    CrossRef Google Scholar

    [49] Fu X, Yang R, Zhu W, et al. 2022a. Initiation of a “lost” large river on the East Asia margin in the Middle Eocene[J]. Preprints, 2022030017.

    Google Scholar

    [50] Fu X, Hu L, Zhu W, et al. 2022b. Miocene provenance changes in Taiwan caused by southward input of sediments from East China Sea Basin[J]. Frontiers in Earth Science, 10: 849181. doi: 10.3389/feart.2022.849181

    CrossRef Google Scholar

    [51] Fu Q, Hu Z, Feng D, et al. 2023. Restoration and evolution of the Paleogene shale sedimentary environment in the Subei Basin, China[J]. ACS omega, 1−12.

    Google Scholar

    [52] Ge Y, Fox M, Liu−Zeng J, et al. 2023. Incision history of the Mekong River valley revealed by spatially differential exhumation[J]. Geomorphology, 435: 108730. doi: 10.1016/j.geomorph.2023.108730

    CrossRef Google Scholar

    [53] Granger D E, Fabel D, Palmer A N. 2001. Pliocene−Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments[J]. Geological Society of America Bulletin, 113(7): 825−836. doi: 10.1130/0016-7606(2001)113<0825:PPIOTG>2.0.CO;2

    CrossRef Google Scholar

    [54] Grimmer J C, Jonckheere R, Enkelmann E, et al. 2002. Cretaceous− Cenozoic history of the southern Tan−Lu fault zone: apatite fission−track and structural constraints from the Dabie Shan (eastern China)[J]. Tectonophysics, 359(3/4): 225−253. doi: 10.1016/S0040-1951(02)00513-9

    CrossRef Google Scholar

    [55] Gu J, Chen J, Sun Q, et al. 2014. China's Yangtze delta: Geochemical fingerprints reflecting river connection to the sea[J]. Geomorphology, 227: 166−173. doi: 10.1016/j.geomorph.2014.05.015

    CrossRef Google Scholar

    [56] Guo R, Sun X, Li Y, et al. 2022. Cenozoic evolution of the Yangtze River: Constraints from detrital zircon UPb ages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 579: 110586.

    Google Scholar

    [57] Hao S, Cheng Y, Gao B, et al. 2023. Provenance changes of the Yangtze River Delta sediments since 3.6 Ma: Evidence from heavy mineral assemblages and detrital zircon U–Pb ages spectra[J]. Quaternary International, 671: 33−43. doi: 10.1016/j.quaint.2023.09.019

    CrossRef Google Scholar

    [58] Hancock G S, Anderson R S. 2002. Numerical modeling of fluvial strath−terrace formation in response to oscillating climate[J]. Geological Society of America Bulletin, 114(9): 1131−1142. doi: 10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2

    CrossRef Google Scholar

    [59] He M, Zheng H, Clift P D. 2013. Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 360: 186−203.

    Google Scholar

    [60] He Z, Zhang X, Bao S, et al. 2015. Multiple climatic cycles imprinted on regional uplift−controlled fluvial terraces in the lower Yalong River and Anning River, SE Xizang Plateau[J]. Geomorphology, 250: 95−112. doi: 10.1016/j.geomorph.2015.08.010

    CrossRef Google Scholar

    [61] He M, Zheng H, Clift P D, et al. 2021. Paleogene Sedimentary Records of the Paleo−Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China[J]. Geochemistry, Geophysics, Geosystems, 22(6): e2020GC009500.

    Google Scholar

    [62] He J, Garzanti E, Jiang T, et al. 2023. Evolution of eastern Asia river systems reconstructed by the mineralogy and detrital−zircon geochronology of modern Red River and coastal Vietnam river sand[J]. Earth−Science Reviews, 245: 104572.

    Google Scholar

    [63] Hoke G D, Liu−Zeng J, Hren M T, et al. 2014. Stable isotopes reveal high southeast Xizang Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 394: 270−278. doi: 10.1016/j.jpgl.2014.03.007

    CrossRef Google Scholar

    [64] Hu S, Kohn B P, Raza A, et al. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai–Dabie belt, Central China, from apatite fission−track thermochronology[J]. Tectonophysics, 420(3/4): 409−429. doi: 10.1016/j.tecto.2006.03.027

    CrossRef Google Scholar

    [65] Huang H, Xiang F, Zhang D, et al. 2023. New evidence from heavy minerals and detrital zircons in Quaternary fluvial sediments for the evolution of the upper Yangtze River, South China[J]. Quaternary Research, 113: 162−181. doi: 10.1017/qua.2022.58

    CrossRef Google Scholar

    [66] Huber B T, MacLeod K G, Watkins D K, et al. 2018. The rise and fall of the Cretaceous Hot Greenhouse climate[J]. Global and Planetary Change, 167: 1−23. doi: 10.1016/j.gloplacha.2018.04.004

    CrossRef Google Scholar

    [67] Ibarra D E, Dai J, Gao Y, et al. 2023. High−elevation Xizang Plateau before India–Eurasia collision recorded by triple oxygen isotopes[J]. Nature Geoscience, 16(9): 810−815. doi: 10.1038/s41561-023-01243-x

    CrossRef Google Scholar

    [68] Ivy−Ochs S, Kober F. 2008. Surface exposure dating with cosmogenic nuclides[J]. E& G Quaternary Science Journal, 57(1/2): 179−209.

    Google Scholar

    [69] Jia J T, Zheng H B, Huang X T, et al. 2010. Detrital zircon U−Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Science Bulletin, 55: 1520−1528. doi: 10.1007/s11434-010-3091-x

    CrossRef Google Scholar

    [70] Jiao R, Yang R, Yuan X. 2021. Incision history of the Three Gorges, Yangtze River constrained from inversion of river profiles and low−temperature thermochronological data[J]. Journal of Geophysical Research: Earth Surface, 126(3): 2020JF005767. doi: 10.1029/2020JF005767

    CrossRef Google Scholar

    [71] Jiao R, Fox M, Yang R. 2022. Late Cenozoic erosion pattern of the eastern margin of the Sichuan Basin: Implications for the drainage evolution of the Yangtze River[J]. Geomorphology, 398: 108025. doi: 10.1016/j.geomorph.2021.108025

    CrossRef Google Scholar

    [72] Kang C, Li C A, Wei C, et al. 2021. Heavy mineral assemblage variation in late Cenozoic sediments from the Middle Yangtze River Basin: Insights into basin sediment provenance and evolution of the Three Gorges Valley[J]. Minerals, 11(10): 1−13.

    Google Scholar

    [73] Kellerhals R, Church M, Bray D I. 1976. Classification and analysis of river processes[J]. Journal of the Hydraulics Division, 102(7): 813−829. doi: 10.1061/JYCEAJ.0004583

    CrossRef Google Scholar

    [74] Kong P, Granger D E, Wu F Y, et al. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo−lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 278(1/2): 131−141. doi: 10.1016/j.jpgl.2008.12.003

    CrossRef Google Scholar

    [75] Kong P, Zheng Y, Caffee M W. 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River[J]. Geochemistry, Geophysics, Geosystems, 13(6): 1−15.

    Google Scholar

    [76] Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Xizang Plateau: Inferences from 40Ar/39Ar and (U−Th)/He thermochronology[J]. Tectonics, 21(1): 1−18.

    Google Scholar

    [77] Lai Z, Zhao Q, Yan Y, et al. 2023. Mesozoic evolution of large−scale drainage systems in the Indochina Block: evidence from paleomagnetic and U−Pb geochronological constraints[J]. Journal of the Geological Society, jgs2023−084.

    Google Scholar

    [78] Lan Q, Yan Y, Huang C Y, et al. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U−Pb chronology and Hf isotope evidence from Taiwan[J]. Gondwana Research, 36: 376−389. doi: 10.1016/j.gr.2015.07.008

    CrossRef Google Scholar

    [79] Lee J S. 1924. Geology of the gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the gorges[J]. Bull Geol Soc China, 3: 351−391. doi: 10.1111/j.1755-6724.1924.mp33-4004.x

    CrossRef Google Scholar

    [80] Lee C Y. 1934. The development of the upper Yangtze valley[J]. Bull Geol Soc China, 3: 107−118.

    Google Scholar

    [81] Lei C, Clift P D, Ren J, et al. 2019. A rapid shift in the sediment routing system of Lower−Upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea[J]. Marine and Petroleum Geology, 104: 249−258. doi: 10.1016/j.marpetgeo.2019.03.012

    CrossRef Google Scholar

    [82] Lei H, Shen X, Liu X, et al. 2022. Oligocene−early Miocene rapid exhumation along the Xianshuihe fault system: Implications for the growth of the Southeastern Xizang Plateau[J]. Journal of Asian Earth Sciences, 240: 105443. doi: 10.1016/j.jseaes.2022.105443

    CrossRef Google Scholar

    [83] Lewin J, Gibbard P L. 2010. Quaternary river terraces in England: forms, sediments and processes[J]. Geomorphology, 120(3/4): 293−311. doi: 10.1016/j.geomorph.2010.04.002

    CrossRef Google Scholar

    [84] Lewin J, Ashworth P J. 2014. Defining large river channel patterns: Alluvial exchange and plurality[J]. Geomorphology, 215: 83−98. doi: 10.1016/j.geomorph.2013.02.024

    CrossRef Google Scholar

    [85] Li J, Xie S, Kuang M. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 41(2/3): 125−135. doi: 10.1016/S0169-555X(01)00110-6

    CrossRef Google Scholar

    [86] Li Y, Cao Sh, Zhou R, et al. 2005. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Xizang Plateau[J]. Acta Geologica Sinica, 79(1): 28−37 (in Chinese with English abstract).

    Google Scholar

    [87] Li J, Zhang Y, Dong S, et al. 2012. Late Mesozoic–Early Cenozoic deformation history of the Yuanma Basin, central South China[J]. Tectonophysics, 570: 163−183.

    Google Scholar

    [88] Li J, Zhang Y, Dong S, et al. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth−Science Reviews, 134: 98−136. doi: 10.1016/j.earscirev.2014.03.008

    CrossRef Google Scholar

    [89] Li Y, He D, Chen L, et al. 2016. Cretaceous sedimentary basins in Sichuan, SW China: Restoration of tectonic and depositional environments[J]. Cretaceous Research, 57: 50−65. doi: 10.1016/j.cretres.2015.07.013

    CrossRef Google Scholar

    [90] Li S, Zhao S, Liu X, et al. 2018a. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011

    CrossRef Google Scholar

    [91] Li Y, He D, Li D, et al. 2018b. Sedimentary provenance constraints on the Jurassic to Cretaceous paleogeography of Sichuan Basin, SW China[J]. Gondwana Research, 60: 15−33. doi: 10.1016/j.gr.2018.03.015

    CrossRef Google Scholar

    [92] Li Y, Zhao J, Wei C, et al. 2021. Cadmium and clay mineral analysis of late Pliocene–Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 598: 1−14. doi: 10.1016/j.quaint.2021.04.009

    CrossRef Google Scholar

    [93] Li J, Dong S, Cawood P A, et al. 2023. Cretaceous long−distance lithospheric extension and surface response in South China[J]. Earth−Science Reviews, 243: 104496.

    Google Scholar

    [94] Lin C M, Zhang X, Zhang N, et al. 2014. Provenance records of the North Jiangsu Basin, East China: Zircon U–Pb geochronology and geochemistry from the Paleogene Dainan Formation in the Gaoyou Sag[J]. Journal of Palaeogeography, 3(1): 99−114.

    Google Scholar

    [95] Lin X, Tian Y, Donelick R A, et al. 2019. Mesozoic and Cenozoic tectonics of the northeastern edge of the Xizang plateau: Evidence from modern river detrital apatite fission−track age constraints[J]. Journal of Asian earth sciences, 170: 84−95. doi: 10.1016/j.jseaes.2018.10.028

    CrossRef Google Scholar

    [96] Lin X, Liu, J. 2019. A review of mountain−basin coupling of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 41(2): 499−520 (in Chinese with English abstract).

    Google Scholar

    [97] Lin X, Jolivet M, Liu−Zeng J, et al. 2021. Mesozoic−Cenozoic cooling history of the Eastern Qinghai Nan Shan (NW China): Apatite low−temperature thermochronology constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 572: 110416.

    Google Scholar

    [98] Lin X, Liu H J, Wu Zh H, et al. 2021. Provenance study on geochemical elements of detrital K−feldspar in Quaternary gravel layer in Yichang and its geological significance[J]. Chinese Journal of Geomechanics, 27(6): 1024−1034 (in Chinese with English abstract).

    Google Scholar

    [99] Lin X, Liu−Zeng J, Wu L, et al. 2023a. Meso–Cenozoic exhumation in the South Qinling Shan (Central China): Recorded by detrital apatite fission−track dating of modern river sediments[J]. Minerals, 13(10): 1−18.

    Google Scholar

    [100] Lin X, Liu J, Liu H J. 2023a. When was the Yellow River formed?[J]. Earth Science, 49(6): 2158−2185 (in Chinese with English abstract).

    Google Scholar

    [101] Lin X, Li C, Liu−Zeng J, et al. 2023b. Detrital zircon U−Pb age analysis of Late Pliocene deposits from the lower Yangtze River, South China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Journal of Earth Science, doi: 10.1007/s12583−023−1961−9.

    Google Scholar

    [102] Lin X, Liu J, Liu W M. 2023b. Development and evolution of the Yellow River and the Yangtze River[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [103] Lin X, Li L L, Liu J, et al. 2023c. Yangtze River contributed detrital materials to Jianghan Basin during early Pleistocene: Constraints from detrital zircon U−Pb ages[J]. Earth Science, 48(11): 4214−4228 (in Chinese with English abstract).

    Google Scholar

    [104] Lin X, Liu J, Liu H J, et al. 2023d. Miocene evolution reconstruction of the Yellow River drainage basin: Constraints from K− feldspar Pb isotopes[J]. Acta Geologica Sinica, 97(10): 3438−3455 (in Chinese with English abstract).

    Google Scholar

    [105] Lin X, Liu−Zeng J, Jolivet M, et al. 2024a. Sedimentary provenance constraints on the Cretaceous to Cenozoic palaeogeography of the western margin of the Jianghan Basin, South China[J]. Gondwana Research, 125: 343−358. doi: 10.1016/j.gr.2023.09.001

    CrossRef Google Scholar

    [106] Lin X, Xu Q, Barham M, et al. 2024b. Tracing the source areas of detrital zircon and K−feldspar in the Yellow River Basin[J]. Earth−Science Reviews, 251: 104718.

    Google Scholar

    [107] Lin X, Jolivet M, Liu−Zeng J, et al. 2024c. Paleozoic−Mesozoic multistage tectonic evolution of the North Qilian Shan revealed by detrital zircon U−Pb and fission−track double dating[J]. Geomorphology, 466: 109447. doi: 10.1016/j.geomorph.2024.109447

    CrossRef Google Scholar

    [108] Lin X, Dröllner M, Barham M, et al. 2024d. The Cenozoic evolution of the Yellow River[J]. Earth−Science Reviews, 261: 104997.

    Google Scholar

    [109] Liu S, Yang Y, Deng B, et al. 2021. Tectonic evolution of the Sichuan basin, southwest China[J]. Earth−Science Reviews, 213: 103470. doi: 10.1016/j.earscirev.2020.103470

    CrossRef Google Scholar

    [110] Liu Y, Liu X, Wang S, et al. 2022a. Late Cenozoic channel migration of the proto−Yangtze River in the delta region: Insights from cosmogenic nuclide burial dating of onshore boreholes[J]. Geomorphology, 407: 108228.

    Google Scholar

    [111] Liu Y, Wang S, Xu S, et al. 2022b. New chronological constraints on the Plio−Pleistocene uplift of the Guizhou Plateau, SE margin of the Xizang Plateau[J]. Quaternary Geochronology, 67: 101237. doi: 10.1016/j.quageo.2021.101237

    CrossRef Google Scholar

    [112] Liu D L, Li H B, Wang P, et al. 2022. Sedimental provenance response in the northern South China Sea to the Cenozoic fluvial evolution[J]. Acta Geologica Sinica, 96(8): 2761−2774 (in Chinese with English abstract).

    Google Scholar

    [113] Liu F, Gao H, Li Z, et al. 2023. Geochronological and sedimentological study of the fluvio−lacustrine deposits from Shigu to Longjie: Implications for the evolution of the lower Jinsha River since the Early Pleistocene[J]. Water, 15(20): 1−19.

    Google Scholar

    [114] Liu−Zeng J, Tapponnier P, Gaudemer Y, et al. 2008. Quantifying landscape differences across the Xizang plateau: Implications for topographic relief evolution[J]. Journal of Geophysical Research: Earth Surface, 113(F4): 1−26.

    Google Scholar

    [115] Liu−Zeng J, Zhang J, McPhillips D, et al. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Xizang, revealed by low−temperature thermochronology[J]. Earth and Planetary Science Letters, 490: 62−76. doi: 10.1016/j.jpgl.2018.03.011

    CrossRef Google Scholar

    [116] Lu H, Feng H, Lyu H, et al. 2023. Formation and evolution of the Asian landscape during the Cenozoic[J]. The Innovation Geoscience, 1(2): 100020−1. doi: 10.59717/j.xinn-geo.2023.100020

    CrossRef Google Scholar

    [117] Lyu C. 2014. Research on the evolution and hydrocarbon accumulation conditions of the Chuxiong Basin[D]. Master's Thesis of Yangtze University (in Chinese with English abstract).

    Google Scholar

    [118] Lyu C, Li C, Chen G, et al. 2021. Zircon U–Pb age constraints on the provenance of Upper Oligocene to Upper Miocene sandstones in the western Qiongdongnan Basin, South China sea[J]. Marine and Petroleum Geology, 126: 104891. doi: 10.1016/j.marpetgeo.2020.104891

    CrossRef Google Scholar

    [119] McLennan S M, Hemming S, McDaniel D K,et al. 1993. Geochemical approaches to sedimentation, provenance, and tectonics[M].Boulder, Colorado, Geological Society of America Special Paper: 21−40.

    Google Scholar

    [120] McPhillips D, Hoke G D, Liu−Zeng J, et al. 2016. Dating the incision of the Yangtze River gorge at the First Bend using three−nuclide burial ages[J]. Geophysical Research Letters, 43(1): 101−110. doi: 10.1002/2015GL066780

    CrossRef Google Scholar

    [121] Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323(3/4): 183−196. doi: 10.1016/S0040-1951(00)00106-2

    CrossRef Google Scholar

    [122] Meng Q R, Wang E, Hu J M. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block[J]. Geological Society of America Bulletin, 117(3/4): 396−410.

    Google Scholar

    [123] Miall A D. 2006. How do we identify big rivers? And how big is big?[J]. Sedimentary Geology, 186(1/2): 39−50. doi: 10.1016/j.sedgeo.2005.10.001

    CrossRef Google Scholar

    [124] Ming Q Z, Pan B T, Su H, et al. 2013. Research on the collapsing and landsliding external dynamic effect of the valley and drainage evolution of Jinsha River[J]. Journal of Yunnan Normal University (Natural Science Edition), 33(5): 1−8 (in Chinese with English abstract).

    Google Scholar

    [125] Morley C K. 2002. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics, 347(4): 189−215. doi: 10.1016/S0040-1951(02)00061-6

    CrossRef Google Scholar

    [126] Najman Y, Zhuang G, Carter A, et al. 2023. When did the Indus River of South−Central Asia take on its “modern” drainage configuration?[J]. Geological Society of America Bulletin, 136(7/8): 2815−2830.

    Google Scholar

    [127] Nie J, Ruetenik G, Gallagher K, et al. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 11(12): 944−948. doi: 10.1038/s41561-018-0244-z

    CrossRef Google Scholar

    [128] Nijssen B, O'Donnell G M, Hamlet A F, et al. 2001. Hydrologic sensitivity of global rivers to climate change[J]. Climatic Change, 50: 143−175.

    Google Scholar

    [129] Nguyen T A, Fyhn M B, Kristensen J Å, et al. 2021. Provenance of the Phuquoc Basin fill, southern Indochina: Implication for Early Cretaceous drainage patterns and basin configuration in Southeast Asia[J]. Gondwana Research, 98: 166−190. doi: 10.1016/j.gr.2021.03.014

    CrossRef Google Scholar

    [130] O'Sullivan G J, Chew D M, Morton A C, et al. 2018. An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis[J]. Geochemistry, Geophysics, Geosystems, 19(4): 1309−1326.

    Google Scholar

    [131] Potter P E. 1978. Significance and origin of big rivers[J]. The Journal of Geology, 86(1): 13−33. doi: 10.1086/649653

    CrossRef Google Scholar

    [132] Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion[J]. Annu. Rev. Earth Planet. Sci., 34: 419−466. doi: 10.1146/annurev.earth.34.031405.125202

    CrossRef Google Scholar

    [133] Richardson N J, Densmore A L, Seward D, et al. 2008. Extraordinary denudation in the Sichuan Basin: Insights from low-temperature thermochronology adjacent to the eastern margin of the Xizang Plateau[J]. Journal of Geophysical Research: Solid Earth, 113(B4): 1−23.

    Google Scholar

    [134] Richardson N J, Densmore A L, Seward D, et al. 2010. Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 38(6): 551−554. doi: 10.1130/G30527.1

    CrossRef Google Scholar

    [135] Rohrmann A, Kirby E, Schwanghart W. 2023. Accelerated Miocene incision along the Yangtze River driven by headward drainage basin expansion[J]. Science Advances, 9(36): eadh1636. doi: 10.1126/sciadv.adh1636

    CrossRef Google Scholar

    [136] Shao L, Yuan S, Kang C, et al. 2012. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 45: 57−64. doi: 10.1016/j.jseaes.2011.09.018

    CrossRef Google Scholar

    [137] Shao L, Yuan S, Kang C, et al. 2015. Changing provenance of Late Cenozoic sediments in the Jianghan Basin[J]. Geoscience Frontiers, 6(4): 605−615. doi: 10.1016/j.gsf.2014.04.010

    CrossRef Google Scholar

    [138] Shi H C, Shi X B, Yang X Q, et al. 2013. The exhumation process of Mufushan granite in Jiangnan uplift since Cenozoic: Evidence from low−temperature thermochronology[J]. Chinese Journal of Geophysics, 56(3): 273−286. doi: 10.1002/cjg2.20028

    CrossRef Google Scholar

    [139] Shen Y C. 1965. Geomorphology of the upper reaches of the Yangtze River [M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [140] Shen C B, Mei L F, Xu S H. 2009. Fission track dating of Mesozoic sandstones and its tectonic significance in the Eastern Sichuan Basin, China[J]. Radiation Measurements, 44(9/10): 945−949. doi: 10.1016/j.radmeas.2009.10.001

    CrossRef Google Scholar

    [141] Shen C B, Donelick R A, O'Sullivan P B, et al. 2012. Provenance and hinterland exhumation from LA−ICP−MS zircon U–Pb and fission−track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology, 281: 194−207.

    Google Scholar

    [142] Shen Q Q, Cao K, Wang G C, et al. 2017. Paleogene sedimentary and structural evolution of the Jianchuan−Lanping Basins, Western Yunnan and its regional tectonic implications[J]. Geotectonica et Metallogenia, 41(1): 23−41 (in Chinese with English abstract).

    Google Scholar

    [143] Shen C B, Hu D, Min K, et al. 2020. Post−orogenic tectonic evolution of the Jiangnan−Xuefeng Orogenic Belt: Insights from multiple geochronometric dating of the Mufushan Massif, South China[J]. Journal of Earth Science, 31: 905−918. doi: 10.1007/s12583-020-1346-2

    CrossRef Google Scholar

    [144] Shu Q, Zhao Z, Zhao Y, et al. 2021. Magnetic properties of late Cenozoic sediments in the Subei Basin: Implications for the Yangtze River run−through time[J]. Journal of Coastal Research, 37(1): 122−131.

    Google Scholar

    [145] Sorrel P, Eymard I, Leloup P H, et al. 2017. Wet tropical climate in SE Xizang during the Late Eocene[J]. Scientific Reports, 7(1): 1−11. doi: 10.1038/s41598-016-0028-x

    CrossRef Google Scholar

    [146] Su H, Dong M, Hu Z. 2019. Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate[J]. Global and Planetary Change, 183: 103002. doi: 10.1016/j.gloplacha.2019.103002

    CrossRef Google Scholar

    [147] Su J, Lin X, Li C A, et al. 2023. Late Mesozoic exhumation of the Huangling Massif: Constraints on the evolution of the middle Yangtze River[J]. Acta Geologica Sinica−English Edition, 98(1): 250−264.

    Google Scholar

    [148] Sun X, Kuiper K F, Wang J, et al. 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research, 30(4): 636−649. doi: 10.1111/bre.12268

    CrossRef Google Scholar

    [149] Sun X, Kuiper K F, Tian Y, et al. 2020. 40Ar/39Ar mica dating of late Cenozoic sediments in SE Xizang: Implications for sediment recycling and drainage evolution[J]. Journal of the Geological Society, 177(4): 843−854. doi: 10.1144/jgs2019-099

    CrossRef Google Scholar

    [150] Sun X, Tian Y, Kuiper K F, et al. 2021. No Yangtze River prior to the late Miocene: Evidence from detrital muscovite and K−feldspar 40Ar/39Ar geochronology[J]. Geophysical Research Letters, 48(5): e2020GL089903. doi: 10.1029/2020GL089903

    CrossRef Google Scholar

    [151] Tao Y, Zhang H, Zhang J, et al. 2022. Late Cretaceous–Early Cenozoic exhumation across the Yalong thrust belt in eastern Xizang and its implications for outward plateau growth[J]. Global and Planetary Change, 216: 103897. doi: 10.1016/j.gloplacha.2022.103897

    CrossRef Google Scholar

    [152] Tang S L, Yan D P, Qiu L, et al. 2014. Partitioning of the Cretaceous Pan−Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?[J]. Gondwana Research, 25(4): 1644−1659. doi: 10.1016/j.gr.2013.06.014

    CrossRef Google Scholar

    [153] Tandon S K, Sinha R. 2022. Geology of large river systems[M]. Large Rivers: Geomorphology and Management, Second Edition: 7−41.

    Google Scholar

    [154] Tian Y, Kohn B P, Qiu N, et al. 2018a. Eocene to Miocene out−of−sequence deformation in the Eastern Xizang Plateau: Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1840−1855. doi: 10.1002/2017JB015049

    CrossRef Google Scholar

    [155] Tian Y, Li R, Tang Y, et al. 2018b. Thermochronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Xizang Plateau[J]. Tectonics, 37(6): 1733−1749. doi: 10.1029/2017TC004868

    CrossRef Google Scholar

    [156] Tian Z, Suo Y, Ding X, et al. 2025. Cenozoic surface Earth system evolution and dynamic paleogeomorphic reconstruction from the Xizang Plateau to the Western Pacific linked by the Yangtze River[J]. Journal of the Geological Society, 182(3): jgs2023−183.

    Google Scholar

    [157] Twidale C R. 2004. River patterns and their meaning[J]. Earth−Science Reviews, 67(3/4): 159−218. doi: 10.1016/j.earscirev.2004.03.001

    CrossRef Google Scholar

    [158] Tyrrell S, Haughton P D, Daly J S, et al. 2012. The Pb isotopic composition of detrital K−feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage[J]. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineralogical Association of Canada, Short Course Series, 42: 203−217.

    Google Scholar

    [159] Wang P. 2004. Cenozoic deformation and the history of sea−land interactions in Asia[J]. Geophysical Monograph Series, 149: 1−22.

    Google Scholar

    [160] Wang E, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Xizang Plateau[J]. Geological Society of America Bulletin, 112(3): 413−423. doi: 10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2

    CrossRef Google Scholar

    [161] Wang J, Li C A, Yang Y, et al. 2010. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan plain, China[J]. Journal of Earth Science, 21(3): 257−271. doi: 10.1007/s12583-010-0090-4

    CrossRef Google Scholar

    [162] Wang P, Zheng H, Liu S. 2013. Geomorphic constraints on middle Yangtze River reversal in eastern Sichuan Basin, China[J]. Journal of Asian Earth Sciences, 69: 70−85. doi: 10.1016/j.jseaes.2012.09.018

    CrossRef Google Scholar

    [163] Wang E, Meng K, Su Z, et al. 2014a. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Xizang Plateau along the Xianshuihe−Xiaojiang fault[J]. Tectonics, 33(5): 686−718. doi: 10.1002/2013TC003337

    CrossRef Google Scholar

    [164] Wang L, Liu C, Gao X, et al. 2014b. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Xizang Plateau: Whole−rock geochemistry, U–Pb geochronology, and Hf isotopic constraints[J]. Sedimentary Geology, 304: 44−58. doi: 10.1016/j.sedgeo.2014.02.003

    CrossRef Google Scholar

    [165] Wang P, Zheng H, Chen L, et al. 2014c. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China[J]. Basin Research, 26(4): 505−522.

    Google Scholar

    [166] Wang H, Tian Y, Liang M. 2017. Late Cenozoic exhumation history of the Luoji Shan in the southeastern Xizang Plateau: Insights from apatite fission−track thermochronology[J]. Journal of the Geological Society, 174(5): 883−891. doi: 10.1144/jgs2017-005

    CrossRef Google Scholar

    [167] Wang P, Zheng H, Liu S, et al. 2018a. Late Cretaceous drainage reorganization of the middle Yangtze River[J]. Lithosphere, 10(3): 392−405.

    Google Scholar

    [168] Wang Y, Zhang J, Zhang B, et al. 2018b. Cenozoic exhumation history of South China: A case study from the Xuefeng Mt. Range[J]. Journal of Asian Earth Sciences, 151: 173−189. doi: 10.1016/j.jseaes.2017.10.039

    CrossRef Google Scholar

    [169] Wang C, Liang X, Foster D A, et al. 2019. Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai–Song Hong Basin, South China Sea[J]. AAPG Bulletin, 103(7): 1525−1552. doi: 10.1306/11211817270

    CrossRef Google Scholar

    [170] Wang L, Shen L, Liu C, et al. 2020. Evolution of the paleo−Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane Basin, central Laos[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 545: 109651.

    Google Scholar

    [171] Wang L, Shen L, Liu C, et al. 2021. The Late Cretaceous source−to−sink system at the eastern margin of the Xizang Plateau: Insights from the provenance of the Lanping Basin[J]. Geoscience Frontiers, 12(3): 101102. doi: 10.1016/j.gsf.2020.11.002

    CrossRef Google Scholar

    [172] Wang L, Ding L, Garzanti E, et al. 2022a. Mid−Cretaceous drainage reorganization and exorheic to endorheic transition in Southeast Xizang[J]. Sedimentary Geology, 439: 106221. doi: 10.1016/j.sedgeo.2022.106221

    CrossRef Google Scholar

    [173] Wang P, Zheng H, Wang Y, et al. 2022b. Sedimentology, geochronology, and provenance of the late Cenozoic “Yangtze Gravel”: Implications for Lower Yangtze River reorganization and tectonic evolution in southeast China[J]. Geological Society of America Bulletin, 134(1/2): 463−486. doi: 10.1130/B35851.1

    CrossRef Google Scholar

    [174] Wang Y, Guo B Y, Guo D F, et al. 2023. Quaternary sedimentary characteristics and paleochannel evolution in the Anqing valley of the Yangtze River[J]. East China Geology, 44(3): 300−312 (in Chinese with English abstract).

    Google Scholar

    [175] Waters J M, Burridge C P, Craw D. 2020. River capture and freshwater biological evolution: A review of galaxiid fish vicariance[J]. Diversity, 12(6): 1−15.

    Google Scholar

    [176] Weltje G J, von Eynatten H. 2004. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 171(1/4): 1−11. doi: 10.1016/j.sedgeo.2004.05.007

    CrossRef Google Scholar

    [177] Wei H H, Wang E, Wu G L, et al. 2016. No sedimentary records indicating southerly flow of the paleo−Upper Yangtze River from the First Bend in southeastern Xizang[J]. Gondwana Research, 32: 93−104. doi: 10.1016/j.gr.2015.02.006

    CrossRef Google Scholar

    [178] Wei C, Voinchet P, Zhang Y, et al. 2020. Chronology and provenance of the Yichang Gravel Layer deposits in the Jianghan Basin, middle Yangtze River Valley, China: Implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International, 550: 39−54. doi: 10.1016/j.quaint.2020.03.020

    CrossRef Google Scholar

    [179] Whipple K X. 2004. Bedrock rivers and the geomorphology of active orogens[J]. Annu. Rev. Earth Planet. Sci., 32: 151−185.

    Google Scholar

    [180] Wissink G K, Hoke G D, Garzione C N, et al. 2016. Temporal and spatial patterns of sediment routing across the southeast margin of the Xizang Plateau: Insights from detrital zircon[J]. Tectonics, 35(11): 2538−2563. doi: 10.1002/2016TC004252

    CrossRef Google Scholar

    [181] Wu Y D. 2009. Sedimentary tectonic evolution of the Cenozoic basin in the southeast margin of the Dabie Orogenic Belt[D]. Doctoral Dissertation of Chengdu University of Technology (in Chinese with English abstract).

    Google Scholar

    [182] Wu J, Zhang K, Xu Y, et al. 2018. Paleoelevations in the Jianchuan Basin of the southeastern Xizang Plateau based on stable isotope and pollen grain analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 93−108.

    Google Scholar

    [183] Wu F, Fang X, Yang Y, et al. 2022. Reorganization of Asian climate in relation to Xizang Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 684−700.

    Google Scholar

    [184] Wu C, Liu C, Yi H, et al. 2017a. Mid−Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea−level change during a greenhouse climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 468: 529−544.

    Google Scholar

    [185] Wu L, Mei L, Liu Y, et al. 2017b. Multiple provenance of rift sediments in the composite basin−mountain system: Constraints from detrital zircon U−Pb geochronology and heavy minerals of the Early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 349: 46−61. doi: 10.1016/j.sedgeo.2016.12.003

    CrossRef Google Scholar

    [186] Wu C, Sun X, Li G, et al. 2024. Cretaceous mountain building processes triggered the aridification and drainage evolution in East Asia[J]. Geological Society of America Bulletin, 136(5/6): 1863−1877.

    Google Scholar

    [187] Xiang F, Zhu L, Wang C, et al. 2007. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 85(3/4): 249−258. doi: 10.1016/j.geomorph.2006.03.027

    CrossRef Google Scholar

    [188] Xie J L. 2017. Research on sedimentary responses to major climate transition events in the Yangtze River Delta region since the Pliocene[D]. Doctoral Dissertation of China University of Geosciences (Wuhan)(in Chinese with English abstract).

    Google Scholar

    [189] Xu C, Zhou Z, Van Den Haute P, et al. 2005. Apatite−fission−track geochronology and its tectonic correlation in the Dabieshan orogen, central China[J]. Science in China: Earth Sciences, 48: 506−520. doi: 10.1360/01yd0409

    CrossRef Google Scholar

    [190] Xu X, Zuza A V, Chen L, et al. 2021. Late Cretaceous to Early Cenozoic extension in the Lower Yangtze region (East China) driven by Izanagi−Pacific plate subduction[J]. Earth−Science Reviews, 221: 103790. doi: 10.1016/j.earscirev.2021.103790

    CrossRef Google Scholar

    [191] Yan D P, Zhou M F, Song H L, et al. 2003. Origin and tectonic significance of a Mesozoic multi−layer over−thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 361(3/4): 239−254. doi: 10.1016/S0040-1951(02)00646-7

    CrossRef Google Scholar

    [192] Yan Y, Carter A, Huang C Y, et al. 2012. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 13(3): 1−12.

    Google Scholar

    [193] Yan Y, Yao D, Tian Z X, et al. 2018. Tectonic topography changes in Cenozoic East Asia: A landscape erosion−sediment archive in the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 19(6): 1731−1750.

    Google Scholar

    [194] Yang C, Shen C, Zattin M, et al. 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges[J]. International Geology Review, 61(16): 1980−1999. doi: 10.1080/00206814.2019.1576066

    CrossRef Google Scholar

    [195] Yang G C. 2010. Sequence filling and tectonic−lithofacies paleogeographic evolution from the late Jurassic to the Neogene in the Sichuan Basin[D]. Doctoral Dissertation of China University of Geosciences (Beijing)(in Chinese with English abstract).

    Google Scholar

    [196] Yang Q D. 2014. Research on tectonic evolution and hydrocarbon accumulation conditions in the Chuxiong Basin[D]. Doctoral Dissertation of China University of Petroleum (East China) (in Chinese with English abstract).

    Google Scholar

    [197] Yang S, Zhang F, Wang Z. 2012a. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 296: 26−38.

    Google Scholar

    [198] Yang J, Yang J X, Chen X Y. 2012b. A re−examination of the molecular phylogeny and biogeography of the genus Schizothorax (Teleostei: Cyprinidae) through enhanced sampling, with emphasis on the species in the Yunnan–Guizhou Plateau, China[J]. Journal of Zoological Systematics and Evolutionary Research, 50(3): 184−191. doi: 10.1111/j.1439-0469.2012.00661.x

    CrossRef Google Scholar

    [199] Yang Z, Shen C, Ratschbacher L, et al. 2017. Sichuan Basin and beyond: Eastward foreland growth of the Xizang Plateau from an integration of Late Cretaceous−Cenozoic fission track and (U−Th)/He ages of the eastern Xizang Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 122(6): 4712−4740. doi: 10.1002/2016JB013751

    CrossRef Google Scholar

    [200] Yang R, Suhail H A, Gourbet L, et al. 2020. Early Pleistocene drainage pattern changes in Eastern Xizang: Constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 531: 115955. doi: 10.1016/j.jpgl.2019.115955

    CrossRef Google Scholar

    [201] Yang S, Li C, Yokoyama K. 2006. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 245(3/4): 762−776.

    Google Scholar

    [202] Yang Y, Xu S, Binnie S A, et al. 2022. Late Cenozoic locally landslide−dammed lakes across the Middle Yangtze River[J]. Geomorphology, 413: 108366. doi: 10.1016/j.geomorph.2022.108366

    CrossRef Google Scholar

    [203] Yang C, Jiao R, Zattin M, et al. 2023. Late Oligocene–Early Miocene incision of the Three Gorges and the initial establishment of an east−flowing Yangtze River[J]. Geomorphology, 441: 108897.

    Google Scholar

    [204] Yao T, Bolch T, Chen D, et al. 2022. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 3(10): 618−632.

    Google Scholar

    [205] Yao X. 2019. Residual subsidence of Cenozoic rift basins on the East Asian continental margin and its causes[D]. Doctoral Dissertation of China University of Geosciences (Beijing)(in Chinese with English abstract).

    Google Scholar

    [206] Yu X, Liu C, Wang C, et al. 2018. Provenance of rift sediments in a composite basin–mountain system: Constraints from petrography, whole-rock geochemistry, and detrital zircon U–Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, central China[J]. International Journal of Earth Sciences, 107: 2741−2766.

    Google Scholar

    [207] Yu X, Liu C, Wang C, et al. 2020. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in central China[J]. Marine and Petroleum Geology, 117: 104390. doi: 10.1016/j.marpetgeo.2020.104390

    CrossRef Google Scholar

    [208] Yuan T, Xu H, Liu G, et al. 2023. Eocene dry eolian system in the Jianchuan Basin, southeastern Xizang Plateau: Implications for regional wind regime and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 111949.

    Google Scholar

    [209] Yue W, Jin B, Zhao B. 2018. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 364: 42−52. doi: 10.1016/j.sedgeo.2017.12.006

    CrossRef Google Scholar

    [210] Yue W, Yang S, Zhao B, et al. 2019. Changes in environment and provenance within the Changjiang (Yangtze River) Delta during Pliocene to Pleistocene transition[J]. Marine Geology, 416: 105976. doi: 10.1016/j.margeo.2019.105976

    CrossRef Google Scholar

    [211] Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon−cycle dynamics[J]. Nature, 451(7176): 279−283. doi: 10.1038/nature06588

    CrossRef Google Scholar

    [212] Zhao X T, Hu D G, Zhang Y S. 2008. Genesis and age of the gravels underlying the Xigeda Formation of Panzhihua, Sichuan, China, and valley development of the ancient Jinsha River[J]. Acta Geochimica Sinica, 29(1): 1−12 (in Chinese with English abstract).

    Google Scholar

    [213] Zhao X T, Wu Zh H, Feng Y Y, et al. 2015. Landscapes and sediments of the ‘Yangtze First Bend’ valley along the Jinsha River and development of the valley[J]. Geological Bulletin of China, 34(1): 83−103 (in Chinese with English abstract).

    Google Scholar

    [214] Zhao X, Zhang H, Hetzel R, et al. 2021a. Existence of a continental−scale river system in eastern Xizang during the Late Cretaceous–Early Palaeogene[J]. Nature communications, 12(1): 7231. doi: 10.1038/s41467-021-27587-9

    CrossRef Google Scholar

    [215] Zhao X, Zhang H, Tao Y, et al. 2021b. Pliocene to Early Pleistocene drainage reorganization in eastern Xizang inferred from detrital zircons[J]. Geophysical Research Letters, 48(20): e2021GL094563. doi: 10.1029/2021GL094563

    CrossRef Google Scholar

    [216] Zhao X, Zhang H, Lease R O, et al. 2023a. Early Cenozoic drainage evolution and surface uplift of the eastern Xizang Plateau: Insights from the Ninglang Basin[J]. Geophysical Research Letters, 50(19): e2023GL105499. doi: 10.1029/2023GL105499

    CrossRef Google Scholar

    [217] Zhao C, Xiong Z, Farnsworth A, et al. 2023b. The late Eocene rise of SE Xizang formed an Asian ‘Mediterranean’ climate[J]. Global and Planetary Change, 231: 104313. doi: 10.1016/j.gloplacha.2023.104313

    CrossRef Google Scholar

    [218] Zhang Y K. 2003. Research on the formation, evolution and hydrocarbon system of the Wangjiang−Qianshan Basin[D]. Doctoral Dissertation of Northwest University (in Chinese with English abstract).

    Google Scholar

    [219] Zhang Y F, Li C, Wang Q L, et al. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 53(4): 584−590. doi: 10.1007/s11434-008-0111-1

    CrossRef Google Scholar

    [220] Zhang Z, Tyrrell S, Li C, et al. 2016. Provenance of detrital K−feldspar in Jianghan Basin sheds new light on the Pliocene–Pleistocene evolution of the Yangtze River[J]. Geological Society of America Bulletin, 128(9/10): 1339−1351. doi: 10.1130/B31445.1

    CrossRef Google Scholar

    [221] Zhang Y Z, Replumaz A, Leloup P H, et al. 2017a. Cooling history of the Gongga batholith: Implications for the Xianshuihe fault and Miocene kinematics of SE Xizang[J]. Earth and Planetary Science Letters, 465: 1−15. doi: 10.1016/j.jpgl.2017.02.025

    CrossRef Google Scholar

    [222] Zhang Z, Daly J S, Li C, et al. 2017b. Sedimentary provenance constraints on drainage evolution models for SE Xizang: Evidence from detrital K-feldspar[J]. Geophysical Research Letters, 44(9): 4064−4073. doi: 10.1002/2017GL073185

    CrossRef Google Scholar

    [223] Zhang X, Huang C, Wang Y, et al. 2017c. Evolving Yangtze River reconstructed by detrital zircon U−Pb dating and petrographic analysis of Miocene marginal sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan[J]. Tectonics, 36(4): 634−651. doi: 10.1002/2016TC004357

    CrossRef Google Scholar

    [224] Zhang J, Wan S, Clift P D, et al. 2019a. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 216: 74−88. doi: 10.1016/j.quascirev.2019.06.002

    CrossRef Google Scholar

    [225] Zhang P, Najman Y, Mei L, et al. 2019b. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan−Xizang tectonics[J]. Earth−Science Reviews, 192: 601−630. doi: 10.1016/j.earscirev.2019.02.003

    CrossRef Google Scholar

    [226] Zhang J, Krijgsman W, Lu Y, et al. 2021a. Detrital zircon ages reveal Yangtze provenance since the Early Oligocene in the East China Sea Shelf Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110548.

    Google Scholar

    [227] Zhang Z, Daly J S, Tyrrell S, et al. 2021b. Formation of the three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth−Science Reviews, 216: 103601. doi: 10.1016/j.earscirev.2021.103601

    CrossRef Google Scholar

    [228] Zhang D, Cao K, Yuan X, et al. 2022a. Late Oligocene−Early Miocene Origin of the First Bend of the Yangtze River explained by thrusting−induced river reorganization[J]. Geomorphology, 411: 108303. doi: 10.1016/j.geomorph.2022.108303

    CrossRef Google Scholar

    [229] Zhang Z, Daly J S, Yan Y, et al. 2022b. Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K−feldspar in Taiwan[J]. Chemical Geology, 592: 120740. doi: 10.1016/j.chemgeo.2022.120740

    CrossRef Google Scholar

    [230] Zhang Z, Daly J S, Tian Y, et al. 2023a. Sedimentary recycling in Jianchuan Basin, SE Xizang Plateau: A solution to the debate on the formation age of the First Bend (Yangtze River)[J]. Geomorphology, 440: 108888. doi: 10.1016/j.geomorph.2023.108888

    CrossRef Google Scholar

    [231] Zhang Y, Yan D P, Qiu L, et al. 2023b. Stepwise growth of the southeastern Xizang Plateau: Structural and thermochronological evidence from the Panxi tectonic belt[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111542.

    Google Scholar

    [232] Zhang Y, Chen X K, Lin X, et al. 2023. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U−Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 42(6): 106−117 (in Chinese with English abstract).

    Google Scholar

    [233] Zheng H, Clift P D, Wang P, et al. 2013a. Pre−miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 110(19): 7556−7561. doi: 10.1073/pnas.1216241110

    CrossRef Google Scholar

    [234] Zheng Y F, Xiao W J, Zhao G. 2013b. Introduction to tectonics of China[J]. Gondwana Research, 23(4): 1189−1206.

    Google Scholar

    [235] Zheng H, Clift P D, He M, et al. 2021. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 49(1): 35−39. doi: 10.1130/G48149.1

    CrossRef Google Scholar

    [236] Zheng H, Yang Q, Cao S, et al. 2022. From desert to monsoon: irreversible climatic transition at ~ 36 Ma in southeastern Xizang Plateau[J]. Progress in Earth and Planetary Science, 9(1): 1−14. doi: 10.1186/s40645-021-00461-4

    CrossRef Google Scholar

    [237] Zheng Y, Li H B, Pan J W, et al. 2022. Connection of the Tiger Leaping Gorge near the First Bend of the Yangtze River: New insights from numerical modelling of geomorphology and elastic flexure deformation[J]. Acta Geologica Sinica, 96(8): 2942−2954 (in Chinese with English abstract).

    Google Scholar

    [238] Zheng Y, Li H, Pan J, et al. 2023. Mid−Pleistocene drainage rearrangement of the Dadu River in response to plate convergence in southeastern Xizang[J]. Quaternary Research, 114: 130−147.

    Google Scholar

    [239] Zhu W L, Zhong K, Fu X W, et al. 2019. The formation and evolution of the East China Sea Shelf Basin: A new view[J]. Earth−Science Reviews, 190: 89−111. doi: 10.1016/j.earscirev.2018.12.009

    CrossRef Google Scholar

    [240] Zhu X, Shen C, Zhou R, et al. 2020. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: Constraints from detrital zircon UPb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776.

    Google Scholar

    [241] 戴世昭. 1997. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社.

    Google Scholar

    [242] 邓宾. 2013. 四川盆地中—新生代盆-山结构与油气分布[D]. 成都理工大学博士学位论文.

    Google Scholar

    [243] 李勇, 曹叔尤, 周荣军, 等. 2005. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 79(1): 28−37.

    Google Scholar

    [244] 林旭, 刘静. 2019. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 41(2): 499−520. doi: 10.3969/j.issn.0253-4967.2019.02.015

    CrossRef Google Scholar

    [245] 林旭, 刘海金, 吴中海, 等. 2021. 宜昌第四纪砾石层钾长石主, 微量元素物源研究及其地质意义[J]. 地质力学学报, 27(6): 1024−1034.

    Google Scholar

    [246] 林旭, 刘静, 刘海金. 2023a. 黄河形成于何时?[J]. 地球科学, 49(6): 2158−2185.

    Google Scholar

    [247] 林旭, 刘静, 刘维明, 等. 2023b. 黄河和长江发育与演化[M]. 北京: 地质出版社.

    Google Scholar

    [248] 林旭, 李玲玲, 刘静, 等. 2023c. 长江早更新世向江汉盆地输送碎屑物质: 来自碎屑锆石U−Pb年龄的约束[J]. 地球科学, 48(11): 4214−4228.

    Google Scholar

    [249] 林旭, 刘静, 刘海金, 等. 2023d. 中新世黄河水系演化重建: 来自钾长石Pb同位素的约束[J]. 地质学报, 97(10): 3438−3455.

    Google Scholar

    [250] 刘栋梁, 李海兵, 王平, 等. 2022. 南海北部盆地新生代物源对周边主要河流演化的响应[J]. 地质学报, 96(8): 2761−2774.

    Google Scholar

    [251] 吕财. 2014. 楚雄盆地掏造演化及油气成藏条件研究[D]. 长江大学硕士学位论文.

    Google Scholar

    [252] 明庆忠, 潘保田, 苏怀, 等. 2013. 金沙江河谷——水系演化的崩滑外动力作用研究[J]. 云南师范大学学报(自然科学版), 33(5): 1−8.

    Google Scholar

    [253] 沈玉昌. 1965. 长江上游的地貌[M]. 北京: 地质出版社.

    Google Scholar

    [254] 沈青强, 曹凯, 王国灿, 等. 2017. 剑川-兰坪盆地古近纪沉积-构造变革及其区域构造意义[J]. 大地构造与成矿学, 41(1): 23−41.

    Google Scholar

    [255] 王毅, 郭炳跃, 郭东峰, 等. 2023. 长江安庆段河谷区第四系沉积特征与古河道演化[J]. 华东地质, 44(3): 300−312.

    Google Scholar

    [256] 吴跃东. 2009. 大别造山带东南缘中新生代盆地沉积构造演化[D]. 成都理工大学博士学位论文.

    Google Scholar

    [257] 谢建磊. 2017. 长江三角洲地区上新世以来主要气候转型事件的沉积响应研究[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [258] 姚翔. 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [259] 杨国臣. 2010. 四川盆地晚侏罗世—新近纪层序充填及构造-岩相古地理演化[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [260] 杨庆道. 2014. 楚雄盆地构造演化及油气成藏条件研究[D]. 中国石油大学(华东)博士学位论文.

    Google Scholar

    [261] 赵希涛, 胡道功, 张永双. 2008. 四川攀枝花昔格达组下伏砾石层成因和时代探讨与古金沙江河谷发育[J]. 地球学报, 29(1): 1−12.

    Google Scholar

    [262] 赵希涛, 吴中海, 冯玉勇, 等. 2015. 金沙江 “长江第一弯” 段河谷地貌, 沉积与发育[J]. 地质通报, 34(1): 83−103.

    Google Scholar

    [263] 张义楷. 2003. 望江-潜山盆地形成演化与含油气系统研究[D]. 西北大学博士学位论文.

    Google Scholar

    [264] 张洋, 陈孝康, 林旭, 等. 2023. 江汉盆地新生代早期河流演化研究: 来自地表河流和盆地钻孔碎屑锆石U−Pb年龄的约束[J]. 地质科技通报, 42(6): 106−117.

    Google Scholar

    [265] 郑勇, 李海兵, 潘家伟, 等. 2022. 长江第一弯虎跳峡的贯通——来自于地表地貌和弹性挠曲的数值模拟分析[J]. 地质学报, 96(8): 2942−2954.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Article Metrics

Article views(542) PDF downloads(579) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint