| Citation: | LIN Xu, CHEN Xiaokang, LIU Jing, WU Zhonghai, HU Chengwei, WU Ruitong, DONG Yanyu, QIN Lishuang, XIANG Runzhi, AN Zhengyang, LU Hang. 2025. When was the Yangtze River formed?. Geological Bulletin of China, 44(6): 949-981. doi: 10.12097/gbc.2024.05.019 |
The Yangtze River, as the longest river in Asia, serves as a direct link connecting the Xizang Plateau and the Pacific Ocean. Delving into the formation and evolution of the Yangtze River can provide invaluable insights into the geological structure and climate changes occurring in East Asia. However, there is currently no consensus regarding the precise timing of its formation or the specific details of its evolutionary process.
To address this research gap, we conducted a comprehensive review, analysis, and comparison of existing sedimentological and geochemical data on the development and evolution of the Yangtze River Basin. Our study begins by examining the context of tectonic evolution and climate change, and subsequently delves into a discussion on the evolutionary process of the Yangtze River.
The results of our analysis reveal the followings: ① During the Late Mesozoic, a large river system formed in the Sichuan Basin that flowed southward. Additionally, tectonic subsidence during this period turned the Jianghan Basin and Wangjiang Basin into regional drainage centers. As a result, the upper, middle, and lower reaches of the Yangtze River Basin experienced segmented evolution. ② Between 60 Ma and 35 Ma, significant subsidence occurred in the Jianghan Basin, Wangjiang Basin, South Yellow Sea Basin, and East China Sea Basin, which continued to function as local drainage centers. During this time, the Jianghan Basin developed extensive salt lake deposits, suggesting the absence of major inflowing or outflowing rivers. However, the Paleo−Red River flowed into the South China Sea, marking the early phase of the evolution of the proto−Yangtze River during this time. ③ Approximately 20 Ma, the Xizang Plateau experienced vertical uplift and lateral extrusion, triggering extensive exhumation processes in the Yungui Plateau. As a result, the Paleo−Red River, which previously flowed southward, disintegrated entirely. In the Middle Miocene, the Three Gorges of the Yangtze River underwent significant incision, leading to the deposition of sedimentary material from the upstream Yangtze River in the Jianghan Basin, Nanjing area, and East China Sea Basin. Consequently, the Yangtze River, with a length exceeding 6000 km, emerged during the Miocene epoch, marking the onset of the evolutionary stage of the Yangtze River. ④ During the Pliocene, the downstream areas of rivers such as the Jinsha River, Yalong River, and Dadu River were affected by heavy rainfall to appear the large−scale landslides, leading to the formation of extensive Paleo−Xigeda Lake. Additionally, the formation of thick gravel layers was observed in various regions, including the Jianchuan Basin, Dadu River and Minjiang River basins, Wangjiang Basin, and the Nanjing area. The wide canyon formed in the Three Gorges region of the Yangtze River. These geological changes suggest a substantial enhancement of the hydraulic transport capacity of the Yangtze River compared to the Middle Miocene. During the Pliocene, the South China region exhibited a similar mountain−river−sea distribution pattern as is observed today, representing a developmental stage of the Yangtze River. ⑤ Between 2 and 1 Ma, Paleo−Xigeda Lake completely disintegrated, resulting in significant reorganization of the main and tributary streams in the Yangtze River. This process brought about notable changes in sediment sources in both the Jianghan Basin and the Yangtze River Delta. Subsequently, a new phase of rapid incision took place in the upstream Yangtze River around 0.7~0.5 Ma, leading to the reestablishment of river terraces in the Jinsha River, Dadu River, and the Three Gorges region. During the middle Pleistocene, as the East China Sea and Yellow Sea became submerged by seawater, the continued incision in the upstream Yangtze River combined with the influence of the seawater in the lower reaches resulted in a significant reduction in the topographic difference between the upstream and downstream erosion levels of the river. Consequently, there was a shift toward deposition processes in the lower reaches, leading to the gradual development of a deltaic landform. These changes indicate the entrance of the Yangtze River Basin into a mature stage during the Quaternary.
The development of fluvial landforms in the Yangtze River Basin was influenced by the interplay of tectonic processes, climate change, and local stochastic effects such as landslides, particularly during the uplift processes of the Xizang Plateau and the surrounding mountains.
| [1] | Ashworth P J, Lewin J. 2012. How do big rivers come to be different?[J]. Earth−Science Reviews, 114(1/2): 84−107. |
| [2] | Avise J C. 1989. Gene trees and organismal histories: a phylogenetic approach to population biology[J]. Evolution, 43(6): 1192−1208. doi: 10.2307/2409356 |
| [3] | Barbour G B. 1936. Physiographic history of the Yangtze[J]. The Geographical Journal, 87(1): 17−32. doi: 10.2307/1786198 |
| [4] | Banner J L. 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy[J]. Earth−Science Reviews, 65(3/4): 141−194. doi: 10.1016/S0012-8252(03)00086-2 |
| [5] | Bernet M, Garver J I. 2005. Fission−track analysis of detrital zircon[J]. Reviews in Mineralogy and Geochemistry, 58(1): 205−237. doi: 10.2138/rmg.2005.58.8 |
| [6] | Best J. 2019. Anthropogenic stresses on the world’s big rivers[J]. Nature Geoscience, 12(1): 7−21. doi: 10.1038/s41561-018-0262-x |
| [7] | Blair T C, McPherson J G. 1999. Grain−size and textural classification of coarse sedimentary particles[J]. Journal of Sedimentary Research, 69(1): 6−19. doi: 10.2110/jsr.69.6 |
| [8] | Blum M D, Törnqvist T E. 2000. Fluvial responses to climate and sea−level change: a review and look forward[J]. Sedimentology, 47: 2−48. doi: 10.1046/j.1365-3091.2000.00008.x |
| [9] | Blum M D. 2022. Large river systems and climate change[M]. Large Rivers: Geomorphology and Management, Second Edition: 916−957. |
| [10] | Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India−Asia collision: rivers draining southwards[J]. Geomorphology, 22(3/4): 285−312. doi: 10.1016/S0169-555X(97)00082-2 |
| [11] | Brown R A, Pasternack G B. 2019. How to build a digital river[J]. Earth−Science Reviews, 194: 283−305. doi: 10.1016/j.earscirev.2019.04.028 |
| [12] | Cao K, Wang G, Leloup P H, et al. 2019. Oligocene−Early Miocene topographic relief generation of southeastern Xizang triggered by thrusting[J]. Tectonics, 38(1): 374−391. doi: 10.1029/2017TC004832 |
| [13] | Cao K, Tian Y, van der Beek P, et al. 2022. Southwestward growth of plateau surfaces in eastern Xizang[J]. Earth−Science Reviews, 232: 104160. |
| [14] | Cao L, Shao L, van Hinsbergen D J J, et al. 2023. Provenance and evolution of East Asian large rivers recorded in the East and South China Seas: A review[J]. Geological Society of America Bulletin, 135(11/12): 2723−2752. |
| [15] | Carter A, Bristow C S. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau Basin, eastern Thailand[J]. Basin Research, 15(2): 271−285. doi: 10.1046/j.1365-2117.2003.00201.x |
| [16] | Caracciolo L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth−Science Reviews, 209: 103226. doi: 10.1016/j.earscirev.2020.103226 |
| [17] | Chen Y, Yan M, Fang X, et al. 2017. Detrital zircon U–Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River[J]. Earth and Planetary Science Letters, 476: 22−33. doi: 10.1016/j.jpgl.2017.07.025 |
| [18] | Chen Z, Xu K, Watanabe M. 2022. Dynamic hydrology and geomorphology of the Yangtze River[M]. Large Rivers: Geomorphology and Management, Second Edition: 687−703. |
| [19] | Chen F, Xue G, Wang Y, et al. 2023. Evolution of the Yangtze River and its biodiversity[J]. The Innovation, 4(3): 1−3. |
| [20] | Cheng Y, Li X, Shu J, et al. 2019. Sedimentary evolution and transgressions of the western Subei Basin in Eastern China since the Late Pliocene[J]. Acta Geologica Sinica−English Edition, 93(1): 155−166. doi: 10.1111/1755-6724.13774 |
| [21] | Cheng H, Suo Y, Ding X, et al. 2023. Neogene morphotectonic evolution of the East Asian Continental Shelf[J]. Geomorphology, 445: 108975. |
| [22] | Clark M K, Schoenbohm L M, Royden L H, et al. 2004. Surface uplift, tectonics, and erosion of eastern Xizang from large−scale drainage patterns[J]. Tectonics, 23(1): 1−24. |
| [23] | Clark M K, House M A, Royden L H, et al. 2005. Late Cenozoic uplift of southeastern Xizang[J]. Geology, 33(6): 525−528. doi: 10.1130/G21265.1 |
| [24] | Clift P D, Layne G D, Blusztajn J. 2004. Marine sedimentary evidence for monsoon strengthening, Xizang uplift and drainage evolution in East Asia[J]. Continent−Ocean Interactions in the East Asian Marginal Seas, Geophys. Monogr. Ser., 149: 255−282. |
| [25] | Clift P D, Long H V, Hinton R, et al. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River−Song Hong sediments[J]. Geochemistry, Geophysics, Geosystems, 9(4): 1−29. |
| [26] | Clift P D, Carter A, Wysocka A, et al. 2020. A Late Eocene−Oligocene through−flowing river between the Upper Yangtze and South China Sea[J]. Geochemistry, Geophysics, Geosystems, 21(7): e2020GC009046. |
| [27] | Cui Y, Shao L, Li Z X, et al. 2024. Early Cenozoic drainage network and paleogeographic evolution within the SE Xizang Plateau and its surrounding area: Synthetic constraints from onshore−offshore geological dataset[J]. Earth−Science Reviews, 258: 104932. doi: 10.1016/j.earscirev.2024.104932 |
| [28] | Dai S Z. 1997. Petroleum geology of Jianghan Saline Basin[M]. Beijing: Petroleum Industry Publishing House (in Chinese). |
| [29] | Demoulin A, Mather A, Whittaker A. 2017. Fluvial archives, a valuable record of vertical crustal deformation[J]. Quaternary Science Reviews, 166: 10−37. doi: 10.1016/j.quascirev.2016.11.011 |
| [30] | Deng B. 2013. Cenozoic basin−mountain structure and hydrocarbon distribution in the Sichuan Basin [D]. Doctoral Dissertation of Chengdu University of Technology (in Chinese with English abstract). |
| [31] | Deng J, Wang Q, Li G, et al. 2014. Cenozoic tectono−magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth−Science Reviews, 138: 268−299. doi: 10.1016/j.earscirev.2014.05.015 |
| [32] | Deng B, Chew D, Jiang L, et al. 2018. Heavy mineral analysis and detrital U−Pb ages of the intracontinental Paleo−Yangzte basin: Implications for a transcontinental source−to−sink system during Late Cretaceous time[J]. Geological Society of America Bulletin, 130(11/12): 2087−2109. doi: 10.1130/B32037.1 |
| [33] | Deng B, Chew D, Mark C, et al. 2021. Late Cenozoic drainage reorganization of the paleo−Yangtze river constrained by multi−proxy provenance analysis of the Paleo−lake Xigeda[J]. Geological Society of America Bulletin, 133(1/2): 199−211. |
| [34] | Deng T, Hu X, Chew D, et al. 2023. Early Jurassic initiation of the modern drainage pattern of the Dabie orogen (East China) revealed by a multi-proxy provenance approach[J]. Basin Research, 36(1): e12834. |
| [35] | Deiner K, Altermatt F. 2014. Transport distance of invertebrate environmental DNA in a natural river[J]. PloS One, 9(2): 1−8. |
| [36] | Ding R, Chang Y, Min K, et al. 2021. Post−orogenic topographic evolution of the Dabie orogen, Eastern China: Insights from apatite and zircon (U−Th)/He thermochronology[J]. Geomorphology, 374: 107487. doi: 10.1016/j.geomorph.2020.107487 |
| [37] | Ding L, Kapp P, Cai F, et al. 2022. Timing and mechanisms of Xizang Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 652−667. |
| [38] | Dong Y, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1−40. doi: 10.1016/j.gr.2015.06.009 |
| [39] | Dong Y, Shi X, Sun S, et al. 2022. Co−evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China[J]. Geosystems and Geoenvironment, 1(2): 100032. doi: 10.1016/j.geogeo.2022.100032 |
| [40] | Enkelmann E, Ratschbacher L, Jonckheere R, et al. 2006. Cenozoic exhumation and deformation of northeastern Xizang and the Qinling: Is Xizang lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 118(5/6): 651−671. doi: 10.1130/B25805.1 |
| [41] | Fan D, Li C, Yokoyama K, et al. 2005. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run−through time[J]. Science in China: Earth Sciences, 48: 1718−1727. |
| [42] | Fan D D, Li C X. 2008. Timing of the Yangtze initiation draining the Xizang Plateau throughout to the East China Sea: A review[J]. Frontiers of Earth Science in China, 2: 302−313. |
| [43] | Farnsworth A, Lunt D J, Robinson S A, et al. 2019. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 5(10): eaax1697. doi: 10.1126/sciadv.aax1697 |
| [44] | Fang X, Guo Z, Jiang D, et al. 2022. No monsoon−dominated climate in northern subtropical Asia before 35 Ma[J]. Global and Planetary Change, 218: 103970. doi: 10.1016/j.gloplacha.2022.103970 |
| [45] | Feng Y, Song C, He P, et al. 2021. Detrital zircon U−Pb geochronology of the Jianchuan Basin, southeastern Xizang Plateau, and its implications for tectonic and paleodrainage evolution[J]. Terra Nova, 33(6): 560−572. doi: 10.1111/ter.12548 |
| [46] | Feng Q, Qiu N, Wu H, et al. 2023. Thermo−kinematic constraints on restoration of the Eastern Sichuan fold−and−thrust belt, South China[J]. Tectonics, 42(9): e2022TC007630. doi: 10.1029/2022TC007630 |
| [47] | Finnegan N J, Sklar L S, Fuller T K. 2007. Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel[J]. Journal of Geophysical Research: Earth Surface, 112(F3): 1−17. |
| [48] | Fu X, Zhu W, Geng J, et al. 2021. The present−day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 205: 104600. doi: 10.1016/j.jseaes.2020.104600 |
| [49] | Fu X, Yang R, Zhu W, et al. 2022a. Initiation of a “lost” large river on the East Asia margin in the Middle Eocene[J]. Preprints, 2022030017. |
| [50] | Fu X, Hu L, Zhu W, et al. 2022b. Miocene provenance changes in Taiwan caused by southward input of sediments from East China Sea Basin[J]. Frontiers in Earth Science, 10: 849181. doi: 10.3389/feart.2022.849181 |
| [51] | Fu Q, Hu Z, Feng D, et al. 2023. Restoration and evolution of the Paleogene shale sedimentary environment in the Subei Basin, China[J]. ACS omega, 1−12. |
| [52] | Ge Y, Fox M, Liu−Zeng J, et al. 2023. Incision history of the Mekong River valley revealed by spatially differential exhumation[J]. Geomorphology, 435: 108730. doi: 10.1016/j.geomorph.2023.108730 |
| [53] | Granger D E, Fabel D, Palmer A N. 2001. Pliocene−Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments[J]. Geological Society of America Bulletin, 113(7): 825−836. doi: 10.1130/0016-7606(2001)113<0825:PPIOTG>2.0.CO;2 |
| [54] | Grimmer J C, Jonckheere R, Enkelmann E, et al. 2002. Cretaceous− Cenozoic history of the southern Tan−Lu fault zone: apatite fission−track and structural constraints from the Dabie Shan (eastern China)[J]. Tectonophysics, 359(3/4): 225−253. doi: 10.1016/S0040-1951(02)00513-9 |
| [55] | Gu J, Chen J, Sun Q, et al. 2014. China's Yangtze delta: Geochemical fingerprints reflecting river connection to the sea[J]. Geomorphology, 227: 166−173. doi: 10.1016/j.geomorph.2014.05.015 |
| [56] | Guo R, Sun X, Li Y, et al. 2022. Cenozoic evolution of the Yangtze River: Constraints from detrital zircon UPb ages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 579: 110586. |
| [57] | Hao S, Cheng Y, Gao B, et al. 2023. Provenance changes of the Yangtze River Delta sediments since 3.6 Ma: Evidence from heavy mineral assemblages and detrital zircon U–Pb ages spectra[J]. Quaternary International, 671: 33−43. doi: 10.1016/j.quaint.2023.09.019 |
| [58] | Hancock G S, Anderson R S. 2002. Numerical modeling of fluvial strath−terrace formation in response to oscillating climate[J]. Geological Society of America Bulletin, 114(9): 1131−1142. doi: 10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2 |
| [59] | He M, Zheng H, Clift P D. 2013. Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 360: 186−203. |
| [60] | He Z, Zhang X, Bao S, et al. 2015. Multiple climatic cycles imprinted on regional uplift−controlled fluvial terraces in the lower Yalong River and Anning River, SE Xizang Plateau[J]. Geomorphology, 250: 95−112. doi: 10.1016/j.geomorph.2015.08.010 |
| [61] | He M, Zheng H, Clift P D, et al. 2021. Paleogene Sedimentary Records of the Paleo−Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China[J]. Geochemistry, Geophysics, Geosystems, 22(6): e2020GC009500. |
| [62] | He J, Garzanti E, Jiang T, et al. 2023. Evolution of eastern Asia river systems reconstructed by the mineralogy and detrital−zircon geochronology of modern Red River and coastal Vietnam river sand[J]. Earth−Science Reviews, 245: 104572. |
| [63] | Hoke G D, Liu−Zeng J, Hren M T, et al. 2014. Stable isotopes reveal high southeast Xizang Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 394: 270−278. doi: 10.1016/j.jpgl.2014.03.007 |
| [64] | Hu S, Kohn B P, Raza A, et al. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai–Dabie belt, Central China, from apatite fission−track thermochronology[J]. Tectonophysics, 420(3/4): 409−429. doi: 10.1016/j.tecto.2006.03.027 |
| [65] | Huang H, Xiang F, Zhang D, et al. 2023. New evidence from heavy minerals and detrital zircons in Quaternary fluvial sediments for the evolution of the upper Yangtze River, South China[J]. Quaternary Research, 113: 162−181. doi: 10.1017/qua.2022.58 |
| [66] | Huber B T, MacLeod K G, Watkins D K, et al. 2018. The rise and fall of the Cretaceous Hot Greenhouse climate[J]. Global and Planetary Change, 167: 1−23. doi: 10.1016/j.gloplacha.2018.04.004 |
| [67] | Ibarra D E, Dai J, Gao Y, et al. 2023. High−elevation Xizang Plateau before India–Eurasia collision recorded by triple oxygen isotopes[J]. Nature Geoscience, 16(9): 810−815. doi: 10.1038/s41561-023-01243-x |
| [68] | Ivy−Ochs S, Kober F. 2008. Surface exposure dating with cosmogenic nuclides[J]. E& G Quaternary Science Journal, 57(1/2): 179−209. |
| [69] | Jia J T, Zheng H B, Huang X T, et al. 2010. Detrital zircon U−Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Science Bulletin, 55: 1520−1528. doi: 10.1007/s11434-010-3091-x |
| [70] | Jiao R, Yang R, Yuan X. 2021. Incision history of the Three Gorges, Yangtze River constrained from inversion of river profiles and low−temperature thermochronological data[J]. Journal of Geophysical Research: Earth Surface, 126(3): 2020JF005767. doi: 10.1029/2020JF005767 |
| [71] | Jiao R, Fox M, Yang R. 2022. Late Cenozoic erosion pattern of the eastern margin of the Sichuan Basin: Implications for the drainage evolution of the Yangtze River[J]. Geomorphology, 398: 108025. doi: 10.1016/j.geomorph.2021.108025 |
| [72] | Kang C, Li C A, Wei C, et al. 2021. Heavy mineral assemblage variation in late Cenozoic sediments from the Middle Yangtze River Basin: Insights into basin sediment provenance and evolution of the Three Gorges Valley[J]. Minerals, 11(10): 1−13. |
| [73] | Kellerhals R, Church M, Bray D I. 1976. Classification and analysis of river processes[J]. Journal of the Hydraulics Division, 102(7): 813−829. doi: 10.1061/JYCEAJ.0004583 |
| [74] | Kong P, Granger D E, Wu F Y, et al. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo−lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 278(1/2): 131−141. doi: 10.1016/j.jpgl.2008.12.003 |
| [75] | Kong P, Zheng Y, Caffee M W. 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River[J]. Geochemistry, Geophysics, Geosystems, 13(6): 1−15. |
| [76] | Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Xizang Plateau: Inferences from 40Ar/39Ar and (U−Th)/He thermochronology[J]. Tectonics, 21(1): 1−18. |
| [77] | Lai Z, Zhao Q, Yan Y, et al. 2023. Mesozoic evolution of large−scale drainage systems in the Indochina Block: evidence from paleomagnetic and U−Pb geochronological constraints[J]. Journal of the Geological Society, jgs2023−084. |
| [78] | Lan Q, Yan Y, Huang C Y, et al. 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U−Pb chronology and Hf isotope evidence from Taiwan[J]. Gondwana Research, 36: 376−389. doi: 10.1016/j.gr.2015.07.008 |
| [79] | Lee J S. 1924. Geology of the gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the gorges[J]. Bull Geol Soc China, 3: 351−391. doi: 10.1111/j.1755-6724.1924.mp33-4004.x |
| [80] | Lee C Y. 1934. The development of the upper Yangtze valley[J]. Bull Geol Soc China, 3: 107−118. |
| [81] | Lei C, Clift P D, Ren J, et al. 2019. A rapid shift in the sediment routing system of Lower−Upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea[J]. Marine and Petroleum Geology, 104: 249−258. doi: 10.1016/j.marpetgeo.2019.03.012 |
| [82] | Lei H, Shen X, Liu X, et al. 2022. Oligocene−early Miocene rapid exhumation along the Xianshuihe fault system: Implications for the growth of the Southeastern Xizang Plateau[J]. Journal of Asian Earth Sciences, 240: 105443. doi: 10.1016/j.jseaes.2022.105443 |
| [83] | Lewin J, Gibbard P L. 2010. Quaternary river terraces in England: forms, sediments and processes[J]. Geomorphology, 120(3/4): 293−311. doi: 10.1016/j.geomorph.2010.04.002 |
| [84] | Lewin J, Ashworth P J. 2014. Defining large river channel patterns: Alluvial exchange and plurality[J]. Geomorphology, 215: 83−98. doi: 10.1016/j.geomorph.2013.02.024 |
| [85] | Li J, Xie S, Kuang M. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 41(2/3): 125−135. doi: 10.1016/S0169-555X(01)00110-6 |
| [86] | Li Y, Cao Sh, Zhou R, et al. 2005. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Xizang Plateau[J]. Acta Geologica Sinica, 79(1): 28−37 (in Chinese with English abstract). |
| [87] | Li J, Zhang Y, Dong S, et al. 2012. Late Mesozoic–Early Cenozoic deformation history of the Yuanma Basin, central South China[J]. Tectonophysics, 570: 163−183. |
| [88] | Li J, Zhang Y, Dong S, et al. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth−Science Reviews, 134: 98−136. doi: 10.1016/j.earscirev.2014.03.008 |
| [89] | Li Y, He D, Chen L, et al. 2016. Cretaceous sedimentary basins in Sichuan, SW China: Restoration of tectonic and depositional environments[J]. Cretaceous Research, 57: 50−65. doi: 10.1016/j.cretres.2015.07.013 |
| [90] | Li S, Zhao S, Liu X, et al. 2018a. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011 |
| [91] | Li Y, He D, Li D, et al. 2018b. Sedimentary provenance constraints on the Jurassic to Cretaceous paleogeography of Sichuan Basin, SW China[J]. Gondwana Research, 60: 15−33. doi: 10.1016/j.gr.2018.03.015 |
| [92] | Li Y, Zhao J, Wei C, et al. 2021. Cadmium and clay mineral analysis of late Pliocene–Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 598: 1−14. doi: 10.1016/j.quaint.2021.04.009 |
| [93] | Li J, Dong S, Cawood P A, et al. 2023. Cretaceous long−distance lithospheric extension and surface response in South China[J]. Earth−Science Reviews, 243: 104496. |
| [94] | Lin C M, Zhang X, Zhang N, et al. 2014. Provenance records of the North Jiangsu Basin, East China: Zircon U–Pb geochronology and geochemistry from the Paleogene Dainan Formation in the Gaoyou Sag[J]. Journal of Palaeogeography, 3(1): 99−114. |
| [95] | Lin X, Tian Y, Donelick R A, et al. 2019. Mesozoic and Cenozoic tectonics of the northeastern edge of the Xizang plateau: Evidence from modern river detrital apatite fission−track age constraints[J]. Journal of Asian earth sciences, 170: 84−95. doi: 10.1016/j.jseaes.2018.10.028 |
| [96] | Lin X, Liu, J. 2019. A review of mountain−basin coupling of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 41(2): 499−520 (in Chinese with English abstract). |
| [97] | Lin X, Jolivet M, Liu−Zeng J, et al. 2021. Mesozoic−Cenozoic cooling history of the Eastern Qinghai Nan Shan (NW China): Apatite low−temperature thermochronology constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 572: 110416. |
| [98] | Lin X, Liu H J, Wu Zh H, et al. 2021. Provenance study on geochemical elements of detrital K−feldspar in Quaternary gravel layer in Yichang and its geological significance[J]. Chinese Journal of Geomechanics, 27(6): 1024−1034 (in Chinese with English abstract). |
| [99] | Lin X, Liu−Zeng J, Wu L, et al. 2023a. Meso–Cenozoic exhumation in the South Qinling Shan (Central China): Recorded by detrital apatite fission−track dating of modern river sediments[J]. Minerals, 13(10): 1−18. |
| [100] | Lin X, Liu J, Liu H J. 2023a. When was the Yellow River formed?[J]. Earth Science, 49(6): 2158−2185 (in Chinese with English abstract). |
| [101] | Lin X, Li C, Liu−Zeng J, et al. 2023b. Detrital zircon U−Pb age analysis of Late Pliocene deposits from the lower Yangtze River, South China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Journal of Earth Science, doi: 10.1007/s12583−023−1961−9. |
| [102] | Lin X, Liu J, Liu W M. 2023b. Development and evolution of the Yellow River and the Yangtze River[M]. Beijing: Geological Publishing House (in Chinese with English abstract). |
| [103] | Lin X, Li L L, Liu J, et al. 2023c. Yangtze River contributed detrital materials to Jianghan Basin during early Pleistocene: Constraints from detrital zircon U−Pb ages[J]. Earth Science, 48(11): 4214−4228 (in Chinese with English abstract). |
| [104] | Lin X, Liu J, Liu H J, et al. 2023d. Miocene evolution reconstruction of the Yellow River drainage basin: Constraints from K− feldspar Pb isotopes[J]. Acta Geologica Sinica, 97(10): 3438−3455 (in Chinese with English abstract). |
| [105] | Lin X, Liu−Zeng J, Jolivet M, et al. 2024a. Sedimentary provenance constraints on the Cretaceous to Cenozoic palaeogeography of the western margin of the Jianghan Basin, South China[J]. Gondwana Research, 125: 343−358. doi: 10.1016/j.gr.2023.09.001 |
| [106] | Lin X, Xu Q, Barham M, et al. 2024b. Tracing the source areas of detrital zircon and K−feldspar in the Yellow River Basin[J]. Earth−Science Reviews, 251: 104718. |
| [107] | Lin X, Jolivet M, Liu−Zeng J, et al. 2024c. Paleozoic−Mesozoic multistage tectonic evolution of the North Qilian Shan revealed by detrital zircon U−Pb and fission−track double dating[J]. Geomorphology, 466: 109447. doi: 10.1016/j.geomorph.2024.109447 |
| [108] | Lin X, Dröllner M, Barham M, et al. 2024d. The Cenozoic evolution of the Yellow River[J]. Earth−Science Reviews, 261: 104997. |
| [109] | Liu S, Yang Y, Deng B, et al. 2021. Tectonic evolution of the Sichuan basin, southwest China[J]. Earth−Science Reviews, 213: 103470. doi: 10.1016/j.earscirev.2020.103470 |
| [110] | Liu Y, Liu X, Wang S, et al. 2022a. Late Cenozoic channel migration of the proto−Yangtze River in the delta region: Insights from cosmogenic nuclide burial dating of onshore boreholes[J]. Geomorphology, 407: 108228. |
| [111] | Liu Y, Wang S, Xu S, et al. 2022b. New chronological constraints on the Plio−Pleistocene uplift of the Guizhou Plateau, SE margin of the Xizang Plateau[J]. Quaternary Geochronology, 67: 101237. doi: 10.1016/j.quageo.2021.101237 |
| [112] | Liu D L, Li H B, Wang P, et al. 2022. Sedimental provenance response in the northern South China Sea to the Cenozoic fluvial evolution[J]. Acta Geologica Sinica, 96(8): 2761−2774 (in Chinese with English abstract). |
| [113] | Liu F, Gao H, Li Z, et al. 2023. Geochronological and sedimentological study of the fluvio−lacustrine deposits from Shigu to Longjie: Implications for the evolution of the lower Jinsha River since the Early Pleistocene[J]. Water, 15(20): 1−19. |
| [114] | Liu−Zeng J, Tapponnier P, Gaudemer Y, et al. 2008. Quantifying landscape differences across the Xizang plateau: Implications for topographic relief evolution[J]. Journal of Geophysical Research: Earth Surface, 113(F4): 1−26. |
| [115] | Liu−Zeng J, Zhang J, McPhillips D, et al. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Xizang, revealed by low−temperature thermochronology[J]. Earth and Planetary Science Letters, 490: 62−76. doi: 10.1016/j.jpgl.2018.03.011 |
| [116] | Lu H, Feng H, Lyu H, et al. 2023. Formation and evolution of the Asian landscape during the Cenozoic[J]. The Innovation Geoscience, 1(2): 100020−1. doi: 10.59717/j.xinn-geo.2023.100020 |
| [117] | Lyu C. 2014. Research on the evolution and hydrocarbon accumulation conditions of the Chuxiong Basin[D]. Master's Thesis of Yangtze University (in Chinese with English abstract). |
| [118] | Lyu C, Li C, Chen G, et al. 2021. Zircon U–Pb age constraints on the provenance of Upper Oligocene to Upper Miocene sandstones in the western Qiongdongnan Basin, South China sea[J]. Marine and Petroleum Geology, 126: 104891. doi: 10.1016/j.marpetgeo.2020.104891 |
| [119] | McLennan S M, Hemming S, McDaniel D K,et al. 1993. Geochemical approaches to sedimentation, provenance, and tectonics[M].Boulder, Colorado, Geological Society of America Special Paper: 21−40. |
| [120] | McPhillips D, Hoke G D, Liu−Zeng J, et al. 2016. Dating the incision of the Yangtze River gorge at the First Bend using three−nuclide burial ages[J]. Geophysical Research Letters, 43(1): 101−110. doi: 10.1002/2015GL066780 |
| [121] | Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323(3/4): 183−196. doi: 10.1016/S0040-1951(00)00106-2 |
| [122] | Meng Q R, Wang E, Hu J M. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block[J]. Geological Society of America Bulletin, 117(3/4): 396−410. |
| [123] | Miall A D. 2006. How do we identify big rivers? And how big is big?[J]. Sedimentary Geology, 186(1/2): 39−50. doi: 10.1016/j.sedgeo.2005.10.001 |
| [124] | Ming Q Z, Pan B T, Su H, et al. 2013. Research on the collapsing and landsliding external dynamic effect of the valley and drainage evolution of Jinsha River[J]. Journal of Yunnan Normal University (Natural Science Edition), 33(5): 1−8 (in Chinese with English abstract). |
| [125] | Morley C K. 2002. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics, 347(4): 189−215. doi: 10.1016/S0040-1951(02)00061-6 |
| [126] | Najman Y, Zhuang G, Carter A, et al. 2023. When did the Indus River of South−Central Asia take on its “modern” drainage configuration?[J]. Geological Society of America Bulletin, 136(7/8): 2815−2830. |
| [127] | Nie J, Ruetenik G, Gallagher K, et al. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 11(12): 944−948. doi: 10.1038/s41561-018-0244-z |
| [128] | Nijssen B, O'Donnell G M, Hamlet A F, et al. 2001. Hydrologic sensitivity of global rivers to climate change[J]. Climatic Change, 50: 143−175. |
| [129] | Nguyen T A, Fyhn M B, Kristensen J Å, et al. 2021. Provenance of the Phuquoc Basin fill, southern Indochina: Implication for Early Cretaceous drainage patterns and basin configuration in Southeast Asia[J]. Gondwana Research, 98: 166−190. doi: 10.1016/j.gr.2021.03.014 |
| [130] | O'Sullivan G J, Chew D M, Morton A C, et al. 2018. An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis[J]. Geochemistry, Geophysics, Geosystems, 19(4): 1309−1326. |
| [131] | Potter P E. 1978. Significance and origin of big rivers[J]. The Journal of Geology, 86(1): 13−33. doi: 10.1086/649653 |
| [132] | Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion[J]. Annu. Rev. Earth Planet. Sci., 34: 419−466. doi: 10.1146/annurev.earth.34.031405.125202 |
| [133] | Richardson N J, Densmore A L, Seward D, et al. 2008. Extraordinary denudation in the Sichuan Basin: Insights from low-temperature thermochronology adjacent to the eastern margin of the Xizang Plateau[J]. Journal of Geophysical Research: Solid Earth, 113(B4): 1−23. |
| [134] | Richardson N J, Densmore A L, Seward D, et al. 2010. Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 38(6): 551−554. doi: 10.1130/G30527.1 |
| [135] | Rohrmann A, Kirby E, Schwanghart W. 2023. Accelerated Miocene incision along the Yangtze River driven by headward drainage basin expansion[J]. Science Advances, 9(36): eadh1636. doi: 10.1126/sciadv.adh1636 |
| [136] | Shao L, Yuan S, Kang C, et al. 2012. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 45: 57−64. doi: 10.1016/j.jseaes.2011.09.018 |
| [137] | Shao L, Yuan S, Kang C, et al. 2015. Changing provenance of Late Cenozoic sediments in the Jianghan Basin[J]. Geoscience Frontiers, 6(4): 605−615. doi: 10.1016/j.gsf.2014.04.010 |
| [138] | Shi H C, Shi X B, Yang X Q, et al. 2013. The exhumation process of Mufushan granite in Jiangnan uplift since Cenozoic: Evidence from low−temperature thermochronology[J]. Chinese Journal of Geophysics, 56(3): 273−286. doi: 10.1002/cjg2.20028 |
| [139] | Shen Y C. 1965. Geomorphology of the upper reaches of the Yangtze River [M]. Beijing: Geological Publishing House (in Chinese with English abstract). |
| [140] | Shen C B, Mei L F, Xu S H. 2009. Fission track dating of Mesozoic sandstones and its tectonic significance in the Eastern Sichuan Basin, China[J]. Radiation Measurements, 44(9/10): 945−949. doi: 10.1016/j.radmeas.2009.10.001 |
| [141] | Shen C B, Donelick R A, O'Sullivan P B, et al. 2012. Provenance and hinterland exhumation from LA−ICP−MS zircon U–Pb and fission−track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology, 281: 194−207. |
| [142] | Shen Q Q, Cao K, Wang G C, et al. 2017. Paleogene sedimentary and structural evolution of the Jianchuan−Lanping Basins, Western Yunnan and its regional tectonic implications[J]. Geotectonica et Metallogenia, 41(1): 23−41 (in Chinese with English abstract). |
| [143] | Shen C B, Hu D, Min K, et al. 2020. Post−orogenic tectonic evolution of the Jiangnan−Xuefeng Orogenic Belt: Insights from multiple geochronometric dating of the Mufushan Massif, South China[J]. Journal of Earth Science, 31: 905−918. doi: 10.1007/s12583-020-1346-2 |
| [144] | Shu Q, Zhao Z, Zhao Y, et al. 2021. Magnetic properties of late Cenozoic sediments in the Subei Basin: Implications for the Yangtze River run−through time[J]. Journal of Coastal Research, 37(1): 122−131. |
| [145] | Sorrel P, Eymard I, Leloup P H, et al. 2017. Wet tropical climate in SE Xizang during the Late Eocene[J]. Scientific Reports, 7(1): 1−11. doi: 10.1038/s41598-016-0028-x |
| [146] | Su H, Dong M, Hu Z. 2019. Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate[J]. Global and Planetary Change, 183: 103002. doi: 10.1016/j.gloplacha.2019.103002 |
| [147] | Su J, Lin X, Li C A, et al. 2023. Late Mesozoic exhumation of the Huangling Massif: Constraints on the evolution of the middle Yangtze River[J]. Acta Geologica Sinica−English Edition, 98(1): 250−264. |
| [148] | Sun X, Kuiper K F, Wang J, et al. 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research, 30(4): 636−649. doi: 10.1111/bre.12268 |
| [149] | Sun X, Kuiper K F, Tian Y, et al. 2020. 40Ar/39Ar mica dating of late Cenozoic sediments in SE Xizang: Implications for sediment recycling and drainage evolution[J]. Journal of the Geological Society, 177(4): 843−854. doi: 10.1144/jgs2019-099 |
| [150] | Sun X, Tian Y, Kuiper K F, et al. 2021. No Yangtze River prior to the late Miocene: Evidence from detrital muscovite and K−feldspar 40Ar/39Ar geochronology[J]. Geophysical Research Letters, 48(5): e2020GL089903. doi: 10.1029/2020GL089903 |
| [151] | Tao Y, Zhang H, Zhang J, et al. 2022. Late Cretaceous–Early Cenozoic exhumation across the Yalong thrust belt in eastern Xizang and its implications for outward plateau growth[J]. Global and Planetary Change, 216: 103897. doi: 10.1016/j.gloplacha.2022.103897 |
| [152] | Tang S L, Yan D P, Qiu L, et al. 2014. Partitioning of the Cretaceous Pan−Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?[J]. Gondwana Research, 25(4): 1644−1659. doi: 10.1016/j.gr.2013.06.014 |
| [153] | Tandon S K, Sinha R. 2022. Geology of large river systems[M]. Large Rivers: Geomorphology and Management, Second Edition: 7−41. |
| [154] | Tian Y, Kohn B P, Qiu N, et al. 2018a. Eocene to Miocene out−of−sequence deformation in the Eastern Xizang Plateau: Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1840−1855. doi: 10.1002/2017JB015049 |
| [155] | Tian Y, Li R, Tang Y, et al. 2018b. Thermochronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Xizang Plateau[J]. Tectonics, 37(6): 1733−1749. doi: 10.1029/2017TC004868 |
| [156] | Tian Z, Suo Y, Ding X, et al. 2025. Cenozoic surface Earth system evolution and dynamic paleogeomorphic reconstruction from the Xizang Plateau to the Western Pacific linked by the Yangtze River[J]. Journal of the Geological Society, 182(3): jgs2023−183. |
| [157] | Twidale C R. 2004. River patterns and their meaning[J]. Earth−Science Reviews, 67(3/4): 159−218. doi: 10.1016/j.earscirev.2004.03.001 |
| [158] | Tyrrell S, Haughton P D, Daly J S, et al. 2012. The Pb isotopic composition of detrital K−feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage[J]. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineralogical Association of Canada, Short Course Series, 42: 203−217. |
| [159] | Wang P. 2004. Cenozoic deformation and the history of sea−land interactions in Asia[J]. Geophysical Monograph Series, 149: 1−22. |
| [160] | Wang E, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Xizang Plateau[J]. Geological Society of America Bulletin, 112(3): 413−423. doi: 10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2 |
| [161] | Wang J, Li C A, Yang Y, et al. 2010. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan plain, China[J]. Journal of Earth Science, 21(3): 257−271. doi: 10.1007/s12583-010-0090-4 |
| [162] | Wang P, Zheng H, Liu S. 2013. Geomorphic constraints on middle Yangtze River reversal in eastern Sichuan Basin, China[J]. Journal of Asian Earth Sciences, 69: 70−85. doi: 10.1016/j.jseaes.2012.09.018 |
| [163] | Wang E, Meng K, Su Z, et al. 2014a. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Xizang Plateau along the Xianshuihe−Xiaojiang fault[J]. Tectonics, 33(5): 686−718. doi: 10.1002/2013TC003337 |
| [164] | Wang L, Liu C, Gao X, et al. 2014b. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Xizang Plateau: Whole−rock geochemistry, U–Pb geochronology, and Hf isotopic constraints[J]. Sedimentary Geology, 304: 44−58. doi: 10.1016/j.sedgeo.2014.02.003 |
| [165] | Wang P, Zheng H, Chen L, et al. 2014c. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China[J]. Basin Research, 26(4): 505−522. |
| [166] | Wang H, Tian Y, Liang M. 2017. Late Cenozoic exhumation history of the Luoji Shan in the southeastern Xizang Plateau: Insights from apatite fission−track thermochronology[J]. Journal of the Geological Society, 174(5): 883−891. doi: 10.1144/jgs2017-005 |
| [167] | Wang P, Zheng H, Liu S, et al. 2018a. Late Cretaceous drainage reorganization of the middle Yangtze River[J]. Lithosphere, 10(3): 392−405. |
| [168] | Wang Y, Zhang J, Zhang B, et al. 2018b. Cenozoic exhumation history of South China: A case study from the Xuefeng Mt. Range[J]. Journal of Asian Earth Sciences, 151: 173−189. doi: 10.1016/j.jseaes.2017.10.039 |
| [169] | Wang C, Liang X, Foster D A, et al. 2019. Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai–Song Hong Basin, South China Sea[J]. AAPG Bulletin, 103(7): 1525−1552. doi: 10.1306/11211817270 |
| [170] | Wang L, Shen L, Liu C, et al. 2020. Evolution of the paleo−Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane Basin, central Laos[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 545: 109651. |
| [171] | Wang L, Shen L, Liu C, et al. 2021. The Late Cretaceous source−to−sink system at the eastern margin of the Xizang Plateau: Insights from the provenance of the Lanping Basin[J]. Geoscience Frontiers, 12(3): 101102. doi: 10.1016/j.gsf.2020.11.002 |
| [172] | Wang L, Ding L, Garzanti E, et al. 2022a. Mid−Cretaceous drainage reorganization and exorheic to endorheic transition in Southeast Xizang[J]. Sedimentary Geology, 439: 106221. doi: 10.1016/j.sedgeo.2022.106221 |
| [173] | Wang P, Zheng H, Wang Y, et al. 2022b. Sedimentology, geochronology, and provenance of the late Cenozoic “Yangtze Gravel”: Implications for Lower Yangtze River reorganization and tectonic evolution in southeast China[J]. Geological Society of America Bulletin, 134(1/2): 463−486. doi: 10.1130/B35851.1 |
| [174] | Wang Y, Guo B Y, Guo D F, et al. 2023. Quaternary sedimentary characteristics and paleochannel evolution in the Anqing valley of the Yangtze River[J]. East China Geology, 44(3): 300−312 (in Chinese with English abstract). |
| [175] | Waters J M, Burridge C P, Craw D. 2020. River capture and freshwater biological evolution: A review of galaxiid fish vicariance[J]. Diversity, 12(6): 1−15. |
| [176] | Weltje G J, von Eynatten H. 2004. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 171(1/4): 1−11. doi: 10.1016/j.sedgeo.2004.05.007 |
| [177] | Wei H H, Wang E, Wu G L, et al. 2016. No sedimentary records indicating southerly flow of the paleo−Upper Yangtze River from the First Bend in southeastern Xizang[J]. Gondwana Research, 32: 93−104. doi: 10.1016/j.gr.2015.02.006 |
| [178] | Wei C, Voinchet P, Zhang Y, et al. 2020. Chronology and provenance of the Yichang Gravel Layer deposits in the Jianghan Basin, middle Yangtze River Valley, China: Implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International, 550: 39−54. doi: 10.1016/j.quaint.2020.03.020 |
| [179] | Whipple K X. 2004. Bedrock rivers and the geomorphology of active orogens[J]. Annu. Rev. Earth Planet. Sci., 32: 151−185. |
| [180] | Wissink G K, Hoke G D, Garzione C N, et al. 2016. Temporal and spatial patterns of sediment routing across the southeast margin of the Xizang Plateau: Insights from detrital zircon[J]. Tectonics, 35(11): 2538−2563. doi: 10.1002/2016TC004252 |
| [181] | Wu Y D. 2009. Sedimentary tectonic evolution of the Cenozoic basin in the southeast margin of the Dabie Orogenic Belt[D]. Doctoral Dissertation of Chengdu University of Technology (in Chinese with English abstract). |
| [182] | Wu J, Zhang K, Xu Y, et al. 2018. Paleoelevations in the Jianchuan Basin of the southeastern Xizang Plateau based on stable isotope and pollen grain analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 93−108. |
| [183] | Wu F, Fang X, Yang Y, et al. 2022. Reorganization of Asian climate in relation to Xizang Plateau uplift[J]. Nature Reviews Earth & Environment, 3(10): 684−700. |
| [184] | Wu C, Liu C, Yi H, et al. 2017a. Mid−Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea−level change during a greenhouse climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 468: 529−544. |
| [185] | Wu L, Mei L, Liu Y, et al. 2017b. Multiple provenance of rift sediments in the composite basin−mountain system: Constraints from detrital zircon U−Pb geochronology and heavy minerals of the Early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 349: 46−61. doi: 10.1016/j.sedgeo.2016.12.003 |
| [186] | Wu C, Sun X, Li G, et al. 2024. Cretaceous mountain building processes triggered the aridification and drainage evolution in East Asia[J]. Geological Society of America Bulletin, 136(5/6): 1863−1877. |
| [187] | Xiang F, Zhu L, Wang C, et al. 2007. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 85(3/4): 249−258. doi: 10.1016/j.geomorph.2006.03.027 |
| [188] | Xie J L. 2017. Research on sedimentary responses to major climate transition events in the Yangtze River Delta region since the Pliocene[D]. Doctoral Dissertation of China University of Geosciences (Wuhan)(in Chinese with English abstract). |
| [189] | Xu C, Zhou Z, Van Den Haute P, et al. 2005. Apatite−fission−track geochronology and its tectonic correlation in the Dabieshan orogen, central China[J]. Science in China: Earth Sciences, 48: 506−520. doi: 10.1360/01yd0409 |
| [190] | Xu X, Zuza A V, Chen L, et al. 2021. Late Cretaceous to Early Cenozoic extension in the Lower Yangtze region (East China) driven by Izanagi−Pacific plate subduction[J]. Earth−Science Reviews, 221: 103790. doi: 10.1016/j.earscirev.2021.103790 |
| [191] | Yan D P, Zhou M F, Song H L, et al. 2003. Origin and tectonic significance of a Mesozoic multi−layer over−thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 361(3/4): 239−254. doi: 10.1016/S0040-1951(02)00646-7 |
| [192] | Yan Y, Carter A, Huang C Y, et al. 2012. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 13(3): 1−12. |
| [193] | Yan Y, Yao D, Tian Z X, et al. 2018. Tectonic topography changes in Cenozoic East Asia: A landscape erosion−sediment archive in the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 19(6): 1731−1750. |
| [194] | Yang C, Shen C, Zattin M, et al. 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges[J]. International Geology Review, 61(16): 1980−1999. doi: 10.1080/00206814.2019.1576066 |
| [195] | Yang G C. 2010. Sequence filling and tectonic−lithofacies paleogeographic evolution from the late Jurassic to the Neogene in the Sichuan Basin[D]. Doctoral Dissertation of China University of Geosciences (Beijing)(in Chinese with English abstract). |
| [196] | Yang Q D. 2014. Research on tectonic evolution and hydrocarbon accumulation conditions in the Chuxiong Basin[D]. Doctoral Dissertation of China University of Petroleum (East China) (in Chinese with English abstract). |
| [197] | Yang S, Zhang F, Wang Z. 2012a. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 296: 26−38. |
| [198] | Yang J, Yang J X, Chen X Y. 2012b. A re−examination of the molecular phylogeny and biogeography of the genus Schizothorax (Teleostei: Cyprinidae) through enhanced sampling, with emphasis on the species in the Yunnan–Guizhou Plateau, China[J]. Journal of Zoological Systematics and Evolutionary Research, 50(3): 184−191. doi: 10.1111/j.1439-0469.2012.00661.x |
| [199] | Yang Z, Shen C, Ratschbacher L, et al. 2017. Sichuan Basin and beyond: Eastward foreland growth of the Xizang Plateau from an integration of Late Cretaceous−Cenozoic fission track and (U−Th)/He ages of the eastern Xizang Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 122(6): 4712−4740. doi: 10.1002/2016JB013751 |
| [200] | Yang R, Suhail H A, Gourbet L, et al. 2020. Early Pleistocene drainage pattern changes in Eastern Xizang: Constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 531: 115955. doi: 10.1016/j.jpgl.2019.115955 |
| [201] | Yang S, Li C, Yokoyama K. 2006. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 245(3/4): 762−776. |
| [202] | Yang Y, Xu S, Binnie S A, et al. 2022. Late Cenozoic locally landslide−dammed lakes across the Middle Yangtze River[J]. Geomorphology, 413: 108366. doi: 10.1016/j.geomorph.2022.108366 |
| [203] | Yang C, Jiao R, Zattin M, et al. 2023. Late Oligocene–Early Miocene incision of the Three Gorges and the initial establishment of an east−flowing Yangtze River[J]. Geomorphology, 441: 108897. |
| [204] | Yao T, Bolch T, Chen D, et al. 2022. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 3(10): 618−632. |
| [205] | Yao X. 2019. Residual subsidence of Cenozoic rift basins on the East Asian continental margin and its causes[D]. Doctoral Dissertation of China University of Geosciences (Beijing)(in Chinese with English abstract). |
| [206] | Yu X, Liu C, Wang C, et al. 2018. Provenance of rift sediments in a composite basin–mountain system: Constraints from petrography, whole-rock geochemistry, and detrital zircon U–Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, central China[J]. International Journal of Earth Sciences, 107: 2741−2766. |
| [207] | Yu X, Liu C, Wang C, et al. 2020. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in central China[J]. Marine and Petroleum Geology, 117: 104390. doi: 10.1016/j.marpetgeo.2020.104390 |
| [208] | Yuan T, Xu H, Liu G, et al. 2023. Eocene dry eolian system in the Jianchuan Basin, southeastern Xizang Plateau: Implications for regional wind regime and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 111949. |
| [209] | Yue W, Jin B, Zhao B. 2018. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 364: 42−52. doi: 10.1016/j.sedgeo.2017.12.006 |
| [210] | Yue W, Yang S, Zhao B, et al. 2019. Changes in environment and provenance within the Changjiang (Yangtze River) Delta during Pliocene to Pleistocene transition[J]. Marine Geology, 416: 105976. doi: 10.1016/j.margeo.2019.105976 |
| [211] | Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon−cycle dynamics[J]. Nature, 451(7176): 279−283. doi: 10.1038/nature06588 |
| [212] | Zhao X T, Hu D G, Zhang Y S. 2008. Genesis and age of the gravels underlying the Xigeda Formation of Panzhihua, Sichuan, China, and valley development of the ancient Jinsha River[J]. Acta Geochimica Sinica, 29(1): 1−12 (in Chinese with English abstract). |
| [213] | Zhao X T, Wu Zh H, Feng Y Y, et al. 2015. Landscapes and sediments of the ‘Yangtze First Bend’ valley along the Jinsha River and development of the valley[J]. Geological Bulletin of China, 34(1): 83−103 (in Chinese with English abstract). |
| [214] | Zhao X, Zhang H, Hetzel R, et al. 2021a. Existence of a continental−scale river system in eastern Xizang during the Late Cretaceous–Early Palaeogene[J]. Nature communications, 12(1): 7231. doi: 10.1038/s41467-021-27587-9 |
| [215] | Zhao X, Zhang H, Tao Y, et al. 2021b. Pliocene to Early Pleistocene drainage reorganization in eastern Xizang inferred from detrital zircons[J]. Geophysical Research Letters, 48(20): e2021GL094563. doi: 10.1029/2021GL094563 |
| [216] | Zhao X, Zhang H, Lease R O, et al. 2023a. Early Cenozoic drainage evolution and surface uplift of the eastern Xizang Plateau: Insights from the Ninglang Basin[J]. Geophysical Research Letters, 50(19): e2023GL105499. doi: 10.1029/2023GL105499 |
| [217] | Zhao C, Xiong Z, Farnsworth A, et al. 2023b. The late Eocene rise of SE Xizang formed an Asian ‘Mediterranean’ climate[J]. Global and Planetary Change, 231: 104313. doi: 10.1016/j.gloplacha.2023.104313 |
| [218] | Zhang Y K. 2003. Research on the formation, evolution and hydrocarbon system of the Wangjiang−Qianshan Basin[D]. Doctoral Dissertation of Northwest University (in Chinese with English abstract). |
| [219] | Zhang Y F, Li C, Wang Q L, et al. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 53(4): 584−590. doi: 10.1007/s11434-008-0111-1 |
| [220] | Zhang Z, Tyrrell S, Li C, et al. 2016. Provenance of detrital K−feldspar in Jianghan Basin sheds new light on the Pliocene–Pleistocene evolution of the Yangtze River[J]. Geological Society of America Bulletin, 128(9/10): 1339−1351. doi: 10.1130/B31445.1 |
| [221] | Zhang Y Z, Replumaz A, Leloup P H, et al. 2017a. Cooling history of the Gongga batholith: Implications for the Xianshuihe fault and Miocene kinematics of SE Xizang[J]. Earth and Planetary Science Letters, 465: 1−15. doi: 10.1016/j.jpgl.2017.02.025 |
| [222] | Zhang Z, Daly J S, Li C, et al. 2017b. Sedimentary provenance constraints on drainage evolution models for SE Xizang: Evidence from detrital K-feldspar[J]. Geophysical Research Letters, 44(9): 4064−4073. doi: 10.1002/2017GL073185 |
| [223] | Zhang X, Huang C, Wang Y, et al. 2017c. Evolving Yangtze River reconstructed by detrital zircon U−Pb dating and petrographic analysis of Miocene marginal sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan[J]. Tectonics, 36(4): 634−651. doi: 10.1002/2016TC004357 |
| [224] | Zhang J, Wan S, Clift P D, et al. 2019a. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 216: 74−88. doi: 10.1016/j.quascirev.2019.06.002 |
| [225] | Zhang P, Najman Y, Mei L, et al. 2019b. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan−Xizang tectonics[J]. Earth−Science Reviews, 192: 601−630. doi: 10.1016/j.earscirev.2019.02.003 |
| [226] | Zhang J, Krijgsman W, Lu Y, et al. 2021a. Detrital zircon ages reveal Yangtze provenance since the Early Oligocene in the East China Sea Shelf Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110548. |
| [227] | Zhang Z, Daly J S, Tyrrell S, et al. 2021b. Formation of the three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth−Science Reviews, 216: 103601. doi: 10.1016/j.earscirev.2021.103601 |
| [228] | Zhang D, Cao K, Yuan X, et al. 2022a. Late Oligocene−Early Miocene Origin of the First Bend of the Yangtze River explained by thrusting−induced river reorganization[J]. Geomorphology, 411: 108303. doi: 10.1016/j.geomorph.2022.108303 |
| [229] | Zhang Z, Daly J S, Yan Y, et al. 2022b. Cenozoic reorganization of fluvial systems in eastern China: Sedimentary provenance of detrital K−feldspar in Taiwan[J]. Chemical Geology, 592: 120740. doi: 10.1016/j.chemgeo.2022.120740 |
| [230] | Zhang Z, Daly J S, Tian Y, et al. 2023a. Sedimentary recycling in Jianchuan Basin, SE Xizang Plateau: A solution to the debate on the formation age of the First Bend (Yangtze River)[J]. Geomorphology, 440: 108888. doi: 10.1016/j.geomorph.2023.108888 |
| [231] | Zhang Y, Yan D P, Qiu L, et al. 2023b. Stepwise growth of the southeastern Xizang Plateau: Structural and thermochronological evidence from the Panxi tectonic belt[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111542. |
| [232] | Zhang Y, Chen X K, Lin X, et al. 2023. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U−Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 42(6): 106−117 (in Chinese with English abstract). |
| [233] | Zheng H, Clift P D, Wang P, et al. 2013a. Pre−miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 110(19): 7556−7561. doi: 10.1073/pnas.1216241110 |
| [234] | Zheng Y F, Xiao W J, Zhao G. 2013b. Introduction to tectonics of China[J]. Gondwana Research, 23(4): 1189−1206. |
| [235] | Zheng H, Clift P D, He M, et al. 2021. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 49(1): 35−39. doi: 10.1130/G48149.1 |
| [236] | Zheng H, Yang Q, Cao S, et al. 2022. From desert to monsoon: irreversible climatic transition at ~ 36 Ma in southeastern Xizang Plateau[J]. Progress in Earth and Planetary Science, 9(1): 1−14. doi: 10.1186/s40645-021-00461-4 |
| [237] | Zheng Y, Li H B, Pan J W, et al. 2022. Connection of the Tiger Leaping Gorge near the First Bend of the Yangtze River: New insights from numerical modelling of geomorphology and elastic flexure deformation[J]. Acta Geologica Sinica, 96(8): 2942−2954 (in Chinese with English abstract). |
| [238] | Zheng Y, Li H, Pan J, et al. 2023. Mid−Pleistocene drainage rearrangement of the Dadu River in response to plate convergence in southeastern Xizang[J]. Quaternary Research, 114: 130−147. |
| [239] | Zhu W L, Zhong K, Fu X W, et al. 2019. The formation and evolution of the East China Sea Shelf Basin: A new view[J]. Earth−Science Reviews, 190: 89−111. doi: 10.1016/j.earscirev.2018.12.009 |
| [240] | Zhu X, Shen C, Zhou R, et al. 2020. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: Constraints from detrital zircon UPb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776. |
| [241] | 戴世昭. 1997. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社. |
| [242] | 邓宾. 2013. 四川盆地中—新生代盆-山结构与油气分布[D]. 成都理工大学博士学位论文. |
| [243] | 李勇, 曹叔尤, 周荣军, 等. 2005. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 79(1): 28−37. |
| [244] | 林旭, 刘静. 2019. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 41(2): 499−520. doi: 10.3969/j.issn.0253-4967.2019.02.015 |
| [245] | 林旭, 刘海金, 吴中海, 等. 2021. 宜昌第四纪砾石层钾长石主, 微量元素物源研究及其地质意义[J]. 地质力学学报, 27(6): 1024−1034. |
| [246] | 林旭, 刘静, 刘海金. 2023a. 黄河形成于何时?[J]. 地球科学, 49(6): 2158−2185. |
| [247] | 林旭, 刘静, 刘维明, 等. 2023b. 黄河和长江发育与演化[M]. 北京: 地质出版社. |
| [248] | 林旭, 李玲玲, 刘静, 等. 2023c. 长江早更新世向江汉盆地输送碎屑物质: 来自碎屑锆石U−Pb年龄的约束[J]. 地球科学, 48(11): 4214−4228. |
| [249] | 林旭, 刘静, 刘海金, 等. 2023d. 中新世黄河水系演化重建: 来自钾长石Pb同位素的约束[J]. 地质学报, 97(10): 3438−3455. |
| [250] | 刘栋梁, 李海兵, 王平, 等. 2022. 南海北部盆地新生代物源对周边主要河流演化的响应[J]. 地质学报, 96(8): 2761−2774. |
| [251] | 吕财. 2014. 楚雄盆地掏造演化及油气成藏条件研究[D]. 长江大学硕士学位论文. |
| [252] | 明庆忠, 潘保田, 苏怀, 等. 2013. 金沙江河谷——水系演化的崩滑外动力作用研究[J]. 云南师范大学学报(自然科学版), 33(5): 1−8. |
| [253] | 沈玉昌. 1965. 长江上游的地貌[M]. 北京: 地质出版社. |
| [254] | 沈青强, 曹凯, 王国灿, 等. 2017. 剑川-兰坪盆地古近纪沉积-构造变革及其区域构造意义[J]. 大地构造与成矿学, 41(1): 23−41. |
| [255] | 王毅, 郭炳跃, 郭东峰, 等. 2023. 长江安庆段河谷区第四系沉积特征与古河道演化[J]. 华东地质, 44(3): 300−312. |
| [256] | 吴跃东. 2009. 大别造山带东南缘中新生代盆地沉积构造演化[D]. 成都理工大学博士学位论文. |
| [257] | 谢建磊. 2017. 长江三角洲地区上新世以来主要气候转型事件的沉积响应研究[D]. 中国地质大学(武汉)博士学位论文. |
| [258] | 姚翔. 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因[D]. 中国地质大学(北京)博士学位论文. |
| [259] | 杨国臣. 2010. 四川盆地晚侏罗世—新近纪层序充填及构造-岩相古地理演化[D]. 中国地质大学(北京)博士学位论文. |
| [260] | 杨庆道. 2014. 楚雄盆地构造演化及油气成藏条件研究[D]. 中国石油大学(华东)博士学位论文. |
| [261] | 赵希涛, 胡道功, 张永双. 2008. 四川攀枝花昔格达组下伏砾石层成因和时代探讨与古金沙江河谷发育[J]. 地球学报, 29(1): 1−12. |
| [262] | 赵希涛, 吴中海, 冯玉勇, 等. 2015. 金沙江 “长江第一弯” 段河谷地貌, 沉积与发育[J]. 地质通报, 34(1): 83−103. |
| [263] | 张义楷. 2003. 望江-潜山盆地形成演化与含油气系统研究[D]. 西北大学博士学位论文. |
| [264] | 张洋, 陈孝康, 林旭, 等. 2023. 江汉盆地新生代早期河流演化研究: 来自地表河流和盆地钻孔碎屑锆石U−Pb年龄的约束[J]. 地质科技通报, 42(6): 106−117. |
| [265] | 郑勇, 李海兵, 潘家伟, 等. 2022. 长江第一弯虎跳峡的贯通——来自于地表地貌和弹性挠曲的数值模拟分析[J]. 地质学报, 96(8): 2942−2954. |
Xizang Plateau is the birthplace of major rivers in Asia (The uplift and denudation of the Xizang Plateau and the sedimentation of the Asian marginal sea have formed a large-scale source-sink system through the connection of these large rivers)
Factors controlling the development of Yangtze River
Main orogenic belts and basins in the Yangtze River Basin
Geological map (a) and Cenozoic stratigraphic histogram (b) of Jianchuan Basin
Geological map of Yinggehai Basin (a) and Cenozoic stratigraphic histogram (b)
Geological map of Chuxiong Basin (a) and Meso-Cenozoic stratigraphic histogram (b)
Geological map of the Sichuan Basin (a) and sedimentary stratigraphic columnar map of the (b)
Geological map of Jianghan Basin (a) and columnar map of sedimentary strata (b, c)
Geological map of the Wangjiang Basin (a) and sedimentary stratigraphic histogram (b)
Tectonic unit division map of the South Yellow Sea Basin (a) and Cenozoic stratigraphic histogram
Geological map (a) and stratigraphic histogram (b) of the Yangtze River Delta
Tectonic unit division map of the East China Sea Basin (a) and Cenozoic stratigraphic bar chart (b)
Main methods for studying the evolution of large rivers
The location distribution of the research results of the formation time of the Yangtze River
Paleogeographic reconstruction map of the evolution of the Yangtze River during the Cretaceous (a) and Paleogene (b) periods
Paleogeographic reconstruction map of the evolution of the Yangtze River in the Neogene (a) and Quaternary (b) periods
Structural and climatic events affecting the development of the Yangtze River