2024 Vol. 43, No. 8
Article Contents

ZHANG Wanyi, DU Can, HU Yalu, LIU Jiangtao, XIA Ye, WANG Fengxiang, HUANG Kuan, SHI Chunyuan. 2024. Basic principles and application prospects of earth system science. Geological Bulletin of China, 43(8): 1277-1288. doi: 10.12097/gbc.2024.02.023
Citation: ZHANG Wanyi, DU Can, HU Yalu, LIU Jiangtao, XIA Ye, WANG Fengxiang, HUANG Kuan, SHI Chunyuan. 2024. Basic principles and application prospects of earth system science. Geological Bulletin of China, 43(8): 1277-1288. doi: 10.12097/gbc.2024.02.023

Basic principles and application prospects of earth system science

  • Earth system science is a science produced in response to the needs of The Times. It has revolutionized the way of thinking and working paradigm of earth geoscientists. Since its emergence, there have been controversies about whether it is a science and what potential applications it has. Using the method of literature review, this paper analyzed the essential characteristics of Earth system science, including its conceptual connotation, theoretical system, and relationship with geoscience, and summarized the methods and technologies of Earth system science. In view of the different problems to be solved, the paper puts forward the prospect of application of Earth system science in three fields: deep earth process, interactions between lithosphere and outer spheres, interaction between outer spheres. The analysis showed that the Earth system science is not only a natural science view based on geoscience and Systems theory, but also a set of advanced working method system to quantify the interactions of various Earth spheres, which is the key to reveal the mystery of the interactions of Earth spheres and solve the habitability of the earth.

  • 加载中
  • [1] Bertalanffy L V, Sutherland J W. 1974. General system theory: foundations, development, applications[J]. IEEE Transactions on Systems, Man, and Cybernetics, SMC−4(6): 592.

    Google Scholar

    [2] Bertolami O, Francisco F. 2018. A physical framework for the earth system, Anthropocene equation and the great acceleration[J]. Global and Planetary Change, 169: 66−69. doi: 10.1016/j.gloplacha.2018.07.006

    CrossRef Google Scholar

    [3] Bi S W. 1997. Earth system science and sustainable development (Ⅰ): the research of meaning, present and content[J]. Systems Engineering−Theory & Practice, 17(6): 105−111 (in Chinese with English abstract).

    Google Scholar

    [4] Bi S W. 1998a. Earth system science and sustainable development (V): summary of basic theory[J]. Systems Engineering−Theory & Practice, 18(3): 62−72 (in Chinese with English abstract).

    Google Scholar

    [5] Bi S W. 1998b. Earth system science and sustainable development (VI): the base to universal tectonics theory of Earth system science[J]. Systems Engineering − Theory & Practice, 18(4): 71−83 (in Chinese with English abstract).

    Google Scholar

    [6] Bi S W. 2003. Earth system science: the frontier of earth science and scientific basis of the sustainable development strategy in the 21st century[J]. Geological Bulletin of China, 22(8): 601−612 (in Chinese with English abstract).

    Google Scholar

    [7] Casado M, Hébert R, Faranda D, et al. 2023. The quandary of detecting the signature of climate change in Antarctica[J]. Nature Climate Change, 13(10): 1082−1088. doi: 10.1038/s41558-023-01791-5

    CrossRef Google Scholar

    [8] Che F X. 2006. Principles and methods for terrestrial ecosystem flux observations[M]. Beijing: Science Press: 9−78 (in Chinese with English abstract).

    Google Scholar

    [9] Chen S P, Zeng B. 1996. Earth system science and geo−Informatics[J]. Geographical Research, 15(2): 1−11 (in Chinese with English abstract).

    Google Scholar

    [10] Chen Z R. 1995. Anthroposphere and earth system[J]. Progress in Geophysics, 10(2): 106−110 (in Chinese with English abstract).

    Google Scholar

    [11] Christiansen E H, Hamblin W K. 2014. Dynamic earth: An introduction to physical geology[M]. Massachusetts: Jones & Bartlett Learning: 62−67.

    Google Scholar

    [12] Christopherson R W, Birkeland G, Moreau J. 2014. Geosystems: An introduction to physical geography[M]. London: Pearson Education Limited: 5−68.

    Google Scholar

    [13] Cornell S E, Prentice I C, House J I, et al. 2012. Understanding the earth system: Global change science for application[M]. Cambridge: Cambridge University Press: 39−64.

    Google Scholar

    [14] Crutzen P J, Stoermer E F. 2000. The Anthropocene[J]. IGBP Global Change Newsletter, 41: 17−18.

    Google Scholar

    [15] Crutzen P J. 2002. Geology of mankind[J]. Nature, 415(6867): 23. doi: 10.1038/415023a

    CrossRef Google Scholar

    [16] Crutzen P J. 2006. Earth system science in the Anthropocene: emerging issues and problems[M]. Berlin: Springer: 13−18.

    Google Scholar

    [17] Dai H M, Zhao J, Liu G D, et al. 2020. Progress in the quality survey of black soil in Northeast China[J]. Geology and Resources, 29(3): 299 (in Chinese with English abstract).

    Google Scholar

    [18] Deng J, Wang Q F, Chen F C, et al. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system[J]. Earth Science Frontiers, 27(2): 106−136 (in Chinese with English abstract).

    Google Scholar

    [19] Donner R, Barbosa S, Kurths J, et al. 2009. Understanding the Earth as a complex system – Recent advances in data analysis and modelling in Earth sciences[J]. European Physical Journal Special Topics, 174(1): 1−9. doi: 10.1140/epjst/e2009-01086-6

    CrossRef Google Scholar

    [20] Dou S G, Zhang L X, Lu J H. 2005. Organizational behavior course[M]. Beijing: Tsinghua University Press: 1−21 (in Chinese).

    Google Scholar

    [21] Dybas C L. 2011. Can Marcellus shale gas development and healthy waterways sustainably coexist?[EB/OL]. (2011−12−09)[2024−07− 05]. https://new.nsf.gov/news/can-marcellus-shale-gas-development- healthy.

    Google Scholar

    [22] Folke C, Polasky S, Rockstroem J, et al. 2021. Our future in the Anthropocene biosphere[J]. Ambio, 50(4): 834−869. doi: 10.1007/s13280-021-01544-8

    CrossRef Google Scholar

    [23] Greco S, Baldocchi D D. 1996. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest[J]. Global Change Biology, 2(3): 183−197. doi: 10.1111/j.1365-2486.1996.tb00071.x

    CrossRef Google Scholar

    [24] Grinevald J. 2008. La biosphère de I'Anthropocène: Climat et pétrole, la double menace−rèperes transdisciplinaires(1824−2007)[M]. Geneva: Georg Éditeur: 283−292.

    Google Scholar

    [25] Hou Z Q. 2018. Supporting integrated natural resource management and systemic restoration based on Earth system science[EB/OL]. (2018− 06−12)[2024−07−05]. Journal of Natural Resources. https://www.cgs. gov.cn/xwl/ddyw/201806/t20180612_461497.html (in Chinese).

    Google Scholar

    [26] Huang B W, Zheng D, Zhao M C. 1999. Modern natural geography[M]. Beijing: Meteorological Press: 5−66 (in Chinese).

    Google Scholar

    [27] Huang P Z, Zhao H F, Wu K N, et al. 2024. Research on land−space ecological restoration zoning based on the types of Earth’s Critical Zone: A case study of Xixia County, Henan Province[J]. Geological Bulletin of China, 43(8): 1325−1335 (in Chinese with English abstract).

    Google Scholar

    [28] Jacobson M C, Charlson R J, Rodhe H, et al. 2000. Earth system science from biogeochemical cycles to global changes (2nd Editon)[M]. London: Elsevier Academic Press: 3−13.

    Google Scholar

    [29] Jiang Y X. 1995. On study of structure and function of world forest ecosystem[J]. Forest Research, 8(3): 314−320 (in Chinese with English abstract).

    Google Scholar

    [30] Jin Z, Wang Y Q, Gao G Y, et al. 2020. Comprehensive Earth critical zone observation and Terrestrial Surface Flux monitoring provide strong scientific support for ecological protection and regional sustainable development on the Loess Plateau of China[J]. Bulletin of Chinese Academy of Sciences, 35(3): 378−387 (in Chinese with English abstract).

    Google Scholar

    [31] Johnson A, Sigona A. 2022. Planetary justice and ‘Healing’ in the Anthropocene[J]. Earth System Governance, 11: 1−9.

    Google Scholar

    [32] Johnson D R, Ruzek M, Kalb M. 2020. Earth system science and the internet[J]. Computers & Geosciences, 26(6): 669−676.

    Google Scholar

    [33] Kump L, Kasting J, Crane R G. 2009. The Earth system (3rd Editon)[M]. London: Pearson: 1−432.

    Google Scholar

    [34] Li S Z, Liu L J, Su Y H, et al. 2023. Carbon tectonics: A new paradigm for Earth system science[J]. Chinese Science Bulletin, 68(4): 309−338 (in Chinese with English abstract). doi: 10.1360/TB-2022-0741

    CrossRef Google Scholar

    [35] Li, J, Schwarzenbach E M, John T, et al. 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective[J]. Nature Communications, 11(1): 514. doi: 10.1038/s41467-019-14110-4

    CrossRef Google Scholar

    [36] Liu D S. 2004. Demand of Anthropocene study in the new stage of geoscience: In honor of late geologist Huang Jiqing for his innovative spirit[J]. Quaternary Sciences, 24(4): 369−378 (in Chinese with English abstract).

    Google Scholar

    [37] Liu D S. 2002. Global change and sustainability science[J]. Earth Science Frontiers, 9(1): 1−9 (in Chinese with English abstract).

    Google Scholar

    [38] Liu D S. 2006. Step into Earth system science: Rudiment Earth system science and our opportunities[J]. Bulletin of National Natural Science Foundation of China, 20(5): 266−271 (in Chinese with English abstract).

    Google Scholar

    [39] Liu J J, Zhai D G, Wang D Z, et al. 2020. Classification and mineralization of the Au−(Ag)−Te−Se deposits[J]. Earth Science Frontiers, 27(2): 79−98 (in Chinese with English abstract).

    Google Scholar

    [40] Liu X, Guo H, Sun R J, et al. 2018. The characteristic analysis and exascale scalability research of large scale parallel applications on Sunway TaihuLight Supercomputer[J]. Chinese Journal of Computers, 41(10): 2209−2220 (in Chinese with English abstract).

    Google Scholar

    [41] Lovelock J E. 1979. Gaia: A new look at life on Earth[M]. Oxford: Oxford University Press: 176.

    Google Scholar

    [42] Lovelock J E. 1990. Hands up for the Gaia hypothesis[J]. Nature, 344: 100−102. doi: 10.1038/344100a0

    CrossRef Google Scholar

    [43] Lü Q T, Meng G X, Yan J Y, et al. 2019. Multi−scale exploration of mineral system: concept and progress−A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt[J]. Geology in China, 46(4): 673−689 (in Chinese with English abstract).

    Google Scholar

    [44] Marsh W M, Kaufman M M. 2012. Physical geography: great systems and global environments[M]. Cambridge: Cambridege University Press: 15−171.

    Google Scholar

    [45] Martin R. 2016. Earth's evolving systems: the history of planet Earth (2nd Editon)[M]. Massachusetts: Jones & Bartlett Learning: 51−199.

    Google Scholar

    [46] Merritts D, Menking K, DeWet, et al. 1998. Environmental Geology: an Earth System Science approach[M]. New York, Basingstoke: W H Freeman and Company: 4−121.

    Google Scholar

    [47] Moreira H, Buzenchi A, Hawkesworth C J, et al. 2023. Plumbing the depths of magma crystallization using 176Lu/177Hf in zircon as a pressure proxy[J]. Geology, 51(3): 233−237. doi: 10.1130/G50659.1

    CrossRef Google Scholar

    [48] Nathwani C L, Wilkinson J J, Brownscombe W, et al. 2023. Mineral texture classification using deep convolutional neural networks: An application to zircons from porphyry copper deposits[J]. Journal of Geophysical Research: Solid Earth, 128(2): 1−19.

    Google Scholar

    [49] National Aeronautics and Space Administration (NASA). 1986. Earth system science overview: A program for global change[R].

    Google Scholar

    [50] National Research Council (NRC). 2001. Basic research opportunities in Earth Science[R].

    Google Scholar

    [51] Owen T, Cess R D, Ramanathan V. 1979. Earth: An enhanced carbon dioxide greenhouse to compensate for reduced solar luminosity[J]. Nature, 277(5698): 640−642. doi: 10.1038/277640a0

    CrossRef Google Scholar

    [52] Peng L, Yin Z Q, Jin A F, et al. 2023. Status and enlightenment of natural resources monitoring and observation network construction in China and aboard[J]. Geological Bulletin of China, 42(12): 2156−2164 (in Chinese with English abstract).

    Google Scholar

    [53] Plank T, Manning C. E. 2019. Subducting carbon[J]. Nature, 574(7778): 343−352. doi: 10.1038/s41586-019-1643-z

    CrossRef Google Scholar

    [54] Pronk J. 2002. The Amsterdam declaration on global change[J]. Challenges of Changing Earth: 207−208.

    Google Scholar

    [55] Qian X S. 2001. On Macro Architecture and Micro Architecture[M]. Hangzhou: Hangzhou Publishing House: 1−410 (in Chinese).

    Google Scholar

    [56] Richardson K, Steffen W, Lucht W, et al. 2023. Earth beyond six of nine planetary boundaries[J]. Science Advances, 9(37): 1−16.

    Google Scholar

    [57] Rockström J, Beringer A, Crona B, et al. 2020. Planetary boundaries: A compass for investing for the common good[C]//Bril H, Kell G, Rasche A. Sustainable investing: A path to a new horizon. London: Routledge: 109−128.

    Google Scholar

    [58] Rockström J, Gupta J, Qin D, et al. 2023. Safe and just Earth system boundaries[J]. Nature, 619(7968): 102−111. doi: 10.1038/s41586-023-06083-8

    CrossRef Google Scholar

    [59] Rockström J, Steffen W, Noone K, et al. 2009. A safe operating space for humanity[J]. Nature, 461(7263): 472−475. doi: 10.1038/461472a

    CrossRef Google Scholar

    [60] Ruddiman W F. 2013. The Anthropocene[J]. Annual Review of Earth and Planetary Sciences, 41(1): 45−68. doi: 10.1146/annurev-earth-050212-123944

    CrossRef Google Scholar

    [61] Schellnhuber H J. 1999. ‘Earth system’ analysis and the second Copernican revolution[J]. Nature, 402(6761): C19−C23.

    Google Scholar

    [62] Shi J. 2014. Enhancing remote sensing research on global change to improve our understanding on Earth system processes[J]. Science China Earth Sciences, 57(10): 2281−2282. doi: 10.1007/s11430-014-4931-3

    CrossRef Google Scholar

    [63] Skinner B J, Murck B W. 2010. The blue planet: an introduction to Earth System Science (3rd Editon)[M]. Hoboken: Wiley: 1−674.

    Google Scholar

    [64] Stanley S, Luczaj J. 2015. Earth system history (4th Editon)[M]. Oxford: Macmillan: 1−21.

    Google Scholar

    [65] Steffen W, Crutzen P J, McNeill J R. 2007. The Anthropocene: are humans now overwhelming the great forces of nature[J]. Ambio, 36(8): 614−621. doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2

    CrossRef Google Scholar

    [66] Steffen W, Richardson K, Rockström J, et al. 2020. The emergence and evolution of Earth system science[J]. Nature Reviews Earth & Environment, 1(1): 54−63.

    Google Scholar

    [67] Sun S, Wang C S. 2008. Gaia theory and Earth system science[J]. Acta Geologica Sinica, 82(1): 1−8 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2008.tb00319.x

    CrossRef Google Scholar

    [68] Tarduno J A, Cottrell R D, Bono R K, et al. 2023. Hadaean to Palaeoarchaean stagnant−lid tectonics revealed by zircon magnetism[J]. Nature, 618: 531−536. doi: 10.1038/s41586-023-06024-5

    CrossRef Google Scholar

    [69] Taylor R J , Reddy S M , Saxey D W et al. 2023. Direct age constraints on the magnetism of Jack Hills zircon[J]. Science Advances, 9(1): 1−6.

    Google Scholar

    [70] UCSanDiego(UCSD). 2024. The keeling curve is a daily record of global atmospheric carbon dioxide concentration maintained by scripps institution of oceanography at UC San Diego[EB/OL]. (2024− 07−04)[2024−07−05]. https://keelingcurve.ucsd.edu.

    Google Scholar

    [71] University of Texas at Arlington. 2023. Study reveals human destruction of global floodplains[EB/OL]. (2023−09−08)[2024−07−05]. https:// www.uta.edu/news/news-releases/2023/09/08/rajib-flood-plains.

    Google Scholar

    [72] Vogt M, Schwarz W H, Schmitt A K, et al. 2023. Graphitic inclusions in zircon from early Phanerozoic S−type granite: Implications for the preservation of Hadean biosignatures[J]. Geochimica et Cosmochimica Acta, 349: 23−40.

    Google Scholar

    [73] Volk T. 2003. Gaia's body: Toward a Physiology of Earth[M]. Cambridge, Mass: MIT Press: 93−124.

    Google Scholar

    [74] Walker M J C, Bauer A M, Edgeworth M, et al. 2024. The Anthropocene is best understood as an ongoing, intensifying, diachronous event[J]. Boreas, 53(1): 1−3. doi: 10.1111/bor.12636

    CrossRef Google Scholar

    [75] Wang P X. 2003. Earth system science in China quo vadis?[J]. Advances in Earth Science, 18(6): 837−851 (in Chinese with English abstract).

    Google Scholar

    [76] Wang Z H. 2011. The Atmospheric sounding course[M]. Beijing: Meteorological Press: 343−344 (in Chinese).

    Google Scholar

    [77] Watson A J, Lovelock J E. 1983. Biological homeostasis of the global environment: The parable of daisyworld[J]. Tellus, 35B(4): 286−289.

    Google Scholar

    [78] Weber G, Caricchi L, Arce J L, et al. 2020. Determining the current size and state of subvolcanic magma reservoirs[J]. Nature Communications, 11(1): 1−14. doi: 10.1038/s41467-019-13993-7

    CrossRef Google Scholar

    [79] Wilkinson D M. 2006. Fundamental processes in Ecology: an earth systems approach[M]. Oxford: Oxford University Press: 57−67.

    Google Scholar

    [80] Witze A. 2023. This quiet lake could mark the start of a new Anthropocene epoch[J]. Nature, 619(7970): 441−442.

    Google Scholar

    [81] Wlostowski A N, Molotch N, Anderson S P, et al. 2021. Signatures of hydrologic function across the critical zone observatory network[J]. Water Resources Research, 57(3): 1−28.

    Google Scholar

    [82] Wu H, Song X, Zhao X, et al. 2019. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil critical zone[J]. Geoderma, 337: 1175−1185. doi: 10.1016/j.geoderma.2018.11.019

    CrossRef Google Scholar

    [83] Wu Z Y, Zhang C, Jiang G C, et al. 2019. Advance of karst critical zone and its carbon cycle[J]. Advances in Earth Science, 34(5): 488−498 (in Chinese with English abstract).

    Google Scholar

    [84] Xu Y, Wu D D, Yang J F, et al. 2019. Earth system science and strategic research on transformation development of geological work[M]. Beijing: Geology Press: 1−212 (in Chinese).

    Google Scholar

    [85] Yao Y P, Ma F C. 2005. A discussion on the conceptual model for the strategy of the Earth system research in China[J]. Advances in Earth Science, 20(2): 144−148 (in Chinese with English abstract).

    Google Scholar

    [86] Ye D Z. 1992. Pre−study of global change in China[M]. Beijing, Meteorological Press: 15−39 (in Chinese).

    Google Scholar

    [87] Yuan D X. 1999. Remarks on Earth system science[J]. Geological Journal of China Universities Remarks on Earth System Science, 5(1): 2−7 (in Chinese with English abstract).

    Google Scholar

    [88] Zalasiewicz J, Waters C N, Williams M, et al. 2015. When did the Anthropocene begin? A mid−twentieth century boundary level is stratigraphically optimal[J]. Quaternary International, 383: 196−203. doi: 10.1016/j.quaint.2014.11.045

    CrossRef Google Scholar

    [89] Zhai Y S. 2000. Metallogenic system and its evolution: from preliminary practice to theoretical consideration[J]. Earth Science−Journal of China University of Geosciences, 25(4): 333−339 (in Chinese with English abstract).

    Google Scholar

    [90] Zhang W Y, Wang F X, Song Z F. 2022. The key to ecological protection in the Yellow River——Earth system science[J]. Journal of Hebei Geo University, 45(2): 23−26 (in Chinese with English abstract).

    Google Scholar

    [91] Zhou T J, Zhang W X, Chen D L. 2022. Understanding and building upon the pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: From the greenhouse effect to Earth system science and beyond[J]. Scientia Sinica (Terrae), 52(4): 579−594 (in Chinese with English abstract).

    Google Scholar

    [92] Zhou X J. 2004. Some coginitions on Earth syetem science[J]. Advances in Earth Science, 19(4): 513−515 (in Chinese with English abstract).

    Google Scholar

    [93] 毕思文. 1997. 地球系统科学与可持续发展(Ⅰ)——研究的意义、现状及其内涵[J]. 系统工程理论与实践, 17(6): 105−111.

    Google Scholar

    [94] 毕思文. 1998a. 地球系统科学与可持续发展(V)——理论基础概 述[J]. 系统工程理论与实践, 18(3): 62−72.

    Google Scholar

    [95] 毕思文. 1998b. 地球系统科学与可持续发展(VI)——地球系统科学统一 构造理论基础[J]. 系统工程理论与实践, 18(4): 71−83.

    Google Scholar

    [96] 毕思文. 2003. 地球系统科学——21世纪地球科学前沿与可持续发展战略科学基础[J]. 地质通报, 22(8): 601−612.

    Google Scholar

    [97] 车凤翔. 2006. 陆地生态系统通量观测的原理及方法[M]. 北京: 科学出版社: 9−78.

    Google Scholar

    [98] 陈述彭, 曾杉. 1996. 地球系统科学与地球信息科学[J]. 地理研究, 15(2): 1−11.

    Google Scholar

    [99] 陈之荣. 1995. 人类圈与地球系统[J]. 地球物理学进展, 10(2): 106−110.

    Google Scholar

    [100] 戴慧敏, 赵君, 刘国栋, 等. 2020. 东北黑土地质量调查成果[J]. 地质与资源, 29(3): 299.

    Google Scholar

    [101] 邓军, 王庆飞, 陈福川, 等. 2020. 再论三江特提斯复合成矿系统[J]. 地学前缘, 27(2): 106−136.

    Google Scholar

    [102] 窦胜功, 张兰霞, 卢纪华. 2005. 组织行为学教程[M]. 北京: 清华大学出版社: 1−21.

    Google Scholar

    [103] 侯增谦. 2018. 立足地球系统科学, 支撑自然资源统一管理和系统修 复[EB/OL]. (2018−06−12)[2024−07−05]. 中国自然资源报. https:// www.cgs.gov.cn/xwl/ddyw/201806/t20180612_461497.html.

    Google Scholar

    [104] 环境保护部,中国科学院. 2015. 《关于印发<全国生态功能区划(修编版)>的公告》[R].

    Google Scholar

    [105] 黄秉维, 郑度, 赵名茶 等. 1999. 现代自然地理[M]. 北京: 气象出版社: 5−66.

    Google Scholar

    [106] 黄培真, 赵华甫, 吴克宁, 等. 2024. 基于地球关键带类型的国土空间生态修复分区研究——以河南省西峡县为例[J]. 地质通报, 43(8): 1325−1335.

    Google Scholar

    [107] 蒋有绪. 1995. 世界森林生态系统结构与功能的研究综述[J]. 林业科学研究, 8(3): 314−320.

    Google Scholar

    [108] 金钊, 王云强, 高光耀, 等. 2020. 地球关键带与地表通量综合观测研究为黄土高原生态保护和可持续发展提供有力的科技支撑[J]. 中国科学院院刊, 35(3): 378−387.

    Google Scholar

    [109] 李三忠, 刘丽军, 索艳慧, 等. 2023. 碳构造: 一个地球系统科学新范 式[J]. 科学通报, 68(4): 309−338.

    Google Scholar

    [110] 刘东生. 2002. 全球变化和可持续发展科学[J]. 地学前缘, 9(1): 1−9.

    Google Scholar

    [111] 刘东生. 2004. 开展“人类世”环境研究, 做新时代地学的开拓者—— 纪念黄汲清先生的地学创新精神[J]. 第四纪研究, 24(4): 369−378.

    Google Scholar

    [112] 刘东生. 2006. 走向“地球系统”的科学: 地球系统科学的学科雏形及我们的机遇[J]. 中国科学基金, 20(5): 266−271.

    Google Scholar

    [113] 刘家军, 翟德高, 王大钊, 等. 2020. Au−(Ag)−Te−Se成矿系统与成矿作用[J]. 地学前缘, 27(2): 79−98.

    Google Scholar

    [114] 刘鑫, 郭恒, 孙茹君, 等. 2018. “神威·太湖之光”计算机系统大规模 应用特征分析与E级可扩展性研究[J]. 计算机学报, 41(10): 2209−2220.

    Google Scholar

    [115] 吕庆田, 孟贵祥, 严加永, 等. 2019. 成矿系统的多尺度探测: 概念与进展——以长江中下游成矿带为例[J]. 中国地质, 46(4): 673−689.

    Google Scholar

    [116] 彭令, 殷志强, 金爱芳, 等. 2023. 国内外自然资源监测与观测网络建设现状及经验启示[J]. 地质通报, 42(12): 2156−2164. doi: 10.12097/j.issn.1671-2552.2023.12.011

    CrossRef Google Scholar

    [117] 钱学森. 2001. 论宏观建筑与微观建筑[M]. 杭州: 杭州出版社: 1−410.

    Google Scholar

    [118] 孙枢, 王成善. 2008. Gaia理论与地球系统科学[J]. 地质学报, 82(1): 1−8. doi: 10.3321/j.issn:0001-5717.2008.01.001

    CrossRef Google Scholar

    [119] 汪品先. 2003. 我国的地球系统科学研究向何处去[J]. 地球科学进展, 18(6): 837−851. doi: 10.3321/j.issn:1001-8166.2003.06.003

    CrossRef Google Scholar

    [120] 王振会. 2011. 大气探测学[M]. 北京: 气象出版社: 343−344.

    Google Scholar

    [121] 吴泽燕, 章程, 蒋忠诚, 等. 2019. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 34(5): 488−498.

    Google Scholar

    [122] 徐勇, 吴登定, 杨建锋, 等. 2019. 地球系统科学与地质工作转型发展战略研究[M]. 北京: 地质出版社: 1−212.

    Google Scholar

    [123] 姚玉鹏, 马福臣. 2005. 关于我国开展地球系统研究战略概念模型的讨论[J]. 地球科学进展, 20(2): 144−148.

    Google Scholar

    [124] 叶笃正. 1992. 中国的全球变化预研究[M]. 北京: 气象出版社: 15−39.

    Google Scholar

    [125] 袁道先. 1999. 对地球系统科学的几点认识[J]. 高校地质学报, 5(1): 2−7.

    Google Scholar

    [126] 翟裕生. 2000. 成矿系统及其演化——初步实践到理论思考[J]. 地球科学(中国地质大学学报), 25(4): 333−339.

    Google Scholar

    [127] 张万益, 王丰翔, 宋泽峰. 2022. 地球系统科学是开启黄河流域生态保护的钥匙[J]. 河北地质大学学报, 45(2): 23−26.

    Google Scholar

    [128] 周天军, 张文霞, 陈德亮. 2022. 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学[J]. 中国科学: 地球科学, 52(4): 579−594.

    Google Scholar

    [129] 周秀骥. 2004. 对地球系统科学的几点认识[J]. 地球科学进展, 19(4): 513−515.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(2082) PDF downloads(1816) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint