2024 Vol. 43, No. 8
Article Contents

PANG Xuejiao, FU Junyu, QIAN Cheng, YANG Xiaoping, WANG Yan. 2024. The discovery of Carboniferous high-Mg diorites and adakites in the Jalaid Banner area, the central Great Xing'an Range and their implications for the subduction of the Nenjiang ocean. Geological Bulletin of China, 43(8): 1430-1445. doi: 10.12097/gbc.2023.09.019
Citation: PANG Xuejiao, FU Junyu, QIAN Cheng, YANG Xiaoping, WANG Yan. 2024. The discovery of Carboniferous high-Mg diorites and adakites in the Jalaid Banner area, the central Great Xing'an Range and their implications for the subduction of the Nenjiang ocean. Geological Bulletin of China, 43(8): 1430-1445. doi: 10.12097/gbc.2023.09.019

The discovery of Carboniferous high-Mg diorites and adakites in the Jalaid Banner area, the central Great Xing'an Range and their implications for the subduction of the Nenjiang ocean

More Information
  • The Late Paleozoic magmatism in the Jalaid Banner area is of great constraint significance in revealing the subduction process and closure mechanism of the Nenjiang ocean. Through field geological survey, petrology, rock geochemistry and zircon U−Pb dating, early Late Carboniferous high−Mg diorites (weighted average age 320.5±1.2 Ma) and O−type adakites (weighted average age 317.9±3.3 Ma) have been discovered in Yuanbaoshan and Jiajiatun, Jalaid Banner. The Yuanbaoshan high−Mg diorite is characterized by low SiO2, high MgO, high Mg #, rich Na2O, and high Ni and Cr contents. It is rich in light rare earth elements (LREE) and large ion lithophilic elements (LILE), loss of high field strength elements (HFSE). It is considered that the partial melting of subduction plates results in the formation of Si−rich fluids, which displace mantle rocks and cause them to form after partial melting. The Jiajiatun quartz diorite is characterized by high SiO2, Na2O, Sr and low Yb, Y, K2O/Na2O, strong REE differentiation, enrichment of LREE and LILE, loss of HFSE, no negative Eu anomaly, poor Mg, Cr, Ni. It is an O−type adakite which formed by partial melting of subtractive plates and crystallization differentiation. The newly discovered adakite−Sanukite rock assemblage in the early Late Carboniferous is consistent with the formation time of the Carboniferous granite in the study area (333~304 Ma), and the high−Mg diorite is associated with gabbro (325.2~317.3 Ma). It is considered that the Jalaid Banner area was located in the active continental margin arc at the western edge of the Songnen massif during this period. At least since the early Late Carboniferous, the Nenjing ocean has been subducted to the southeast beneath the Songnen massif.

  • 加载中
  • [1] Atherton M P, Petford N. 1993. Gencration of sodium−rich magmas from newly underplated basaltic crust[J]. Nature, 362: 144−146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [2] Chappell B W. 1999. Aluminium saturation in I−and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [3] Deng J F, Liu C, Feng Y F, et al. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): Two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4): 1112−1118(in Chinese with English abstract).

    Google Scholar

    [4] Feng Z Q, Li W M, Liu Y J, et al. 2018a. Early Carboniferous tectonic evolution of the northern Heihe − Nenjiang − Hegenshan suture zone, NE China: Constraints from the mylonitized Nenjiang rhyolites and the Moguqi gabbros[J]. Geological Journal, 53(3): 1005−1021. doi: 10.1002/gj.2940

    CrossRef Google Scholar

    [5] Feng Z Q, Liu Y J, Li L, et al. 2018b. Subduction, accretion and collision during the Neoproterozoic −Cambrian orogeny in the Great Xing'an Range, NE China: Insights from geochemistry and geochronology of the Ali River ophioliti cmélange and arc−type granodiorites[J]. Precambrian Research, 311: 117−135. doi: 10.1016/j.precamres.2018.04.013

    CrossRef Google Scholar

    [6] Furukawa Y, Tatsumi Y. 1999. Melting of a subducting slab and production of high−Mg andesite magmas: Unusual magmatism in SW Japan[J]. Geophys. Res. Lett., 26(15): 2271−2274. doi: 10.1029/1999GL900512

    CrossRef Google Scholar

    [7] Ge M C, Zhou W X, Yu Y, et al. 2011. Dissolution and supracrustal rocks dating of XilinGol Complex, Inner Mongolia, China[J]. Earth Science Frontiers, 18(5): 182−195(in Chinese with English abstract).

    Google Scholar

    [8] Grove T L, Parman S W, Bowring S A, et al. 2002. The role of H2O rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California[J]. Contributions to Mineralogy and Petrology, 142: 375−396. doi: 10.1007/s004100100299

    CrossRef Google Scholar

    [9] Han G Q, Liu Y J, Neubauer F, et al. 2015. U−Pb age and Hf isotopic data of detrital zircons from the Devonian and Carboniferous sandstones in Yimin area, NE China: New evidences to the collision timing between the Xing’an and Erguna blocks in eastern segment of Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 97: 211−228. doi: 10.1016/j.jseaes.2014.08.006

    CrossRef Google Scholar

    [10] Jahn B M, Windley B, Natal'in B, et al. 2004. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 23(5): 599−603. doi: 10.1016/S1367-9120(03)00124-X

    CrossRef Google Scholar

    [11] Jahn B M, Litvinovsky B A, Zanvilevich A N, et al. 2009. Peralkaline granitoidmagmatism in the Mongolian−Transbaikalian Belt: Evolution, petrogenesis and tectonic significance[J]. Lithos, 113 (3/4): 521−539.

    Google Scholar

    [12] Jenner G A. 1981. Geochemistry of high−Mg andesites from Cape Vogel, Papa New Guinea[J]. Chem. Geol., 33: 307−332.

    Google Scholar

    [13] Jian P, Kröner A, Windley B F, et al. 2012. Carboniferous and Cretaceous mafic−ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142/143: 48−66.

    Google Scholar

    [14] Kamei A, Owada M, Nagao T, et al. 2004. High−Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions[J]. Lithos, 75: 359−371. doi: 10.1016/j.lithos.2004.03.006

    CrossRef Google Scholar

    [15] Kay R W. 1978. Alertian magnesian andesite: Melts from subducted Pacific 0cean crust[J]. Journal of Volcanology and Geothermal Research, 4: 117−132. doi: 10.1016/0377-0273(78)90032-X

    CrossRef Google Scholar

    [16] Kelemen P B. 1995. Genesis of high Mg# andesites and the continental crust[J]. Contributions to Mineralogy and Petrology, 120: 1−19. doi: 10.1007/BF00311004

    CrossRef Google Scholar

    [17] Lassiter J C, Depaolo D J. 1997. Plumes/ lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints[C]//Mahoney J. Large Igneous Provinces: Continental, Oceallic, and Planetary F1ood Volcanism. Geophysical Monography 100, American Geophysical Union: 335−355.

    Google Scholar

    [18] Li J Y. 1998. Some new ideas on tectonices of NE China and its neighboring areas[J]. Geological Review, 44(4): 339−347(in Chinese with English abstract).

    Google Scholar

    [19] Li J Y, Liu J F, Qu J F, et al. 2019. Paleozoic tectonic units of Northeast China: Continental blocks or orogenic belts?[J]. Earth Science, 44(10): 3157−3177(in Chinese with English abstract).

    Google Scholar

    [20] Li S L, Ouyang Z Y. 1998. Tectonic framework and evolution of xing’anling−mongolian orogenic belt(xmob) and its adjacent region[J]. Marine Geology and Quaternary Geology, 18(3): 45−54(in Chinese with English abstract).

    Google Scholar

    [21] Li Y, Ling M X, Ding X, et al. 2009. Adakites or adakitic rocks and associated metallogenesis in eastern China[J]. Geotectonicaet Metallogenia, 33(3): 448−464(in Chinese with English abstract).

    Google Scholar

    [22] Liang S, Peng Y J, Jiang Z L. 2009. Discussion on “multi−laminatestructure” of basement in Songliao Basin and its significance[J]. Global Geology, 28(4): 430−437,475(in Chinese with English abstract).

    Google Scholar

    [23] Liu Y J, Zhang X Z, Jin W, et al. 2010. Late paleozoic tectonic evolution in northeast China[J]. Geology in China, 37(4): 943−951(in Chinese with English abstract).

    Google Scholar

    [24] Liu Y J, Zhang X J, Chi X G, et al. 2011. Deformation and tectonic layer division of the upper paleozoic in Daxing’anling area[J]. Journal of Jilin University(Earth Science Edition), 41(5): 1304−1313(in Chinese with English abstract).

    Google Scholar

    [25] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [26] Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05

    CrossRef Google Scholar

    [27] Ludwig K R. 2003. Isoplot/Ex Version 3.0 A- Geochronological Toolkit for Mircrosoft Excel[M].Berkeley:Berkeley Geochronological Centre Special Publication.

    Google Scholar

    [28] Ma Y F. 2019. The late Paleozoic tectonic evolution of the central Great Xing’an Range, NE China[D]. Jilin University Doctorate Dissertation (in Chinese with English abstract).

    Google Scholar

    [29] Ma Y F, Liu Y J, Qin T, et al. 2020. Late Devonian to Early Carboniferous magmatism in the western Songliao−Xilinhot block, Northeast China: Implications foreastward subduction of the Nenjiang oceanic lithosphere[J]. Geological Journal, 55(3): 2208−2231. doi: 10.1002/gj.3739

    CrossRef Google Scholar

    [30] Ma Y F, Liu Y J, Qin T, et al. 2022. Closure mechanism of the Nenjiang Ocean: Constraint from the deformation pattern and age of the Yinder Complex in Jalaid Banner area, SE Inner Mongolia, China[J]. Acta Petrologica Sinica, 38(8): 2419−2441(in Chinese with English abstract).

    Google Scholar

    [31] Ma Y F, Liu Y J, Peskov A Y, et al. 2022. Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China[J]. China Geology, 5(4): 555−578.

    Google Scholar

    [32] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite−trondhjemite− granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1): 1−24.

    Google Scholar

    [33] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [34] Müntener O, Kelemen P B, Grove T L. 2001. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study[J]. Contributions to Mineralogy and Petrology, 141: 643−658. doi: 10.1007/s004100100266

    CrossRef Google Scholar

    [35] Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−4(in Chinese with Einglish abstract).

    Google Scholar

    [36] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [37] Pei F P, Xu W L, Yang D B, et al. 2006. Zircon U−Pb geochronology of basement metamorphic rocks in Songliao basin and its geological significance[J]. Chinese Science Bulletin, 51(24): 2881−2887(in Chinese). doi: 10.1360/csb2006-51-24-2881

    CrossRef Google Scholar

    [38] Polat A, Kerrich R. 2001. Magnesian andesites, Nb−enriched basalt−andesites, and adakites from late−Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic pr[J]. Contributions to Mineralogy and Petrology, 14(1): 36−52.

    Google Scholar

    [39] Qian C, Lu L, Qin T, et al. 2018. The early late−paleozoic granitic magmatism in the zalantun region, northern Great Xing’an Range, NE China: Constraints on the timing of amalgamation of Erguna−Xing’an and Songnen blocks[J]. Acta Geologica Sinica, 92(11): 2190−2214(in Chinese with English abstract).

    Google Scholar

    [40] Qiu L G, Ren F L, Cao Z X, et al. 2008. Late mesozoic magmatic activities and their constraints on geotectonics of Jiaodong region[J]. Geotectonicaet Metallogenia, 32(1): 117−123(in Chinese with English abstract).

    Google Scholar

    [41] Shi Y, Chen J S, Wei M H, et al. 2020. Evolution of eastern segment of the Paleo−Asian Ocean in the Late Paleozoic: Geochronology and geochemistry constraints of granites in Faku area, North Liaoning, NE China[J]. Acta Petrologica Sinica, 36(11): 3287−3308(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.03

    CrossRef Google Scholar

    [42] Shimoda G, Tatsumi Y, Nohda S, et al. 1998. Setouchi high−Mg andesites revisited: Geochemical evidence for melting of subducted sediments[J]. Earth and Planetary Science Letters, 160: 479−492. doi: 10.1016/S0012-821X(98)00105-8

    CrossRef Google Scholar

    [43] Smithies R H, Champion D C. 2000. The Archaean high−Mg diorite suite: Links to tonalite −trondhjemite −granodiorite magmatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 41(12): 1653−1671. doi: 10.1093/petrology/41.12.1653

    CrossRef Google Scholar

    [44] Song B, Zhang Y H, Wan Y, et al. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(S1): 26−30(in Chinese with English abstract).

    Google Scholar

    [45] Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle−derived, LILE−enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province[J]. Canadian Journal of Earth Sciences, 26(9): 1688−1712. doi: 10.1139/e89-145

    CrossRef Google Scholar

    [46] Stevenson R, Herry P, Gariepy C. 1999. Assimilation−fractional crystallization origin of Archean sanukitoid suites: Western Superior Province, Canada[J]. Precambrian Res., 96: 83−89. doi: 10.1016/S0301-9268(99)00009-1

    CrossRef Google Scholar

    [47] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Specical Publications, 42(1) : 313−345.

    Google Scholar

    [48] Tatsumi Y, Ishikawa N, Anno K, et al. 2001. Tectonic setting of high−Mg andesite magmatism in the SW Japan arc: K−Ar chronology of the Setouchi volcanic belt[J]. Geophysical Journal International, 144(3): 625−631. doi: 10.1046/j.1365-246x.2001.01358.x

    CrossRef Google Scholar

    [49] Tatsumi Y, Shukuno H, Sato K, et al. 2003. The petrology and geochemistry of high− magnesium andesites at the western tip of the Setourhi volcanic belt, SW Japan[J]. Journal of Petrology, 44(9): 1561−1578. doi: 10.1093/petrology/egg049

    CrossRef Google Scholar

    [50] Thiéblemont D, Tegyey M. 1994. One discrimination géochimique desroches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calco−alcalins[J]. Comptes Rendusde l’Académiedes Sciences Paris, 319: 87−94(in France).

    Google Scholar

    [51] Wang C, Sun F, Liu D, et al. 2022. Discovery of the Early Paleozoic Akechukesai high−Mg diorites in the western segment of East Kunium Orogenic Belt and its constraints on the mechanism of break−off from Proto−Tethys Oceane subducted slab[J]. Geosciences Journal, 26: 1−16.

    Google Scholar

    [52] Wang Y, Fu J Y, Na F C, et al. 2013. Geochemical characteristics and zircon U−Pb age of the gabbro −diorite in Jalaid Banner of Inner Mongolia and their geological significance[J]. Geological Bulletin of China, 32(10): 1525−1535(in Chinese with English abstract).

    Google Scholar

    [53] Wu G, Sun F Y, Zhao C S, et al. 2005. Discovery of early Paleozoic post−collisional granites in the northern margin of Erguna block and its geological significance[J]. Chinese Science Bulletin, 50(20): 2278−2288(in Chinese). doi: 10.1360/972004-679

    CrossRef Google Scholar

    [54] Wu S Y, Hou L, Ding J, et al. 2017. Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province[J]. Geological Bulletin of China, 36(2/3): 445−458(in Chinese with English abstract).

    Google Scholar

    [55] Wu Y B, Zheng Y F. 2004. Origin mineralogy of zircon and its constraints on U−Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604(in Chinese). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [56] Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary study on the pre−Mesozoic tectonic unitdivision of the Xing−Meng Orogenic Belt ( XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).

    Google Scholar

    [57] Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian Orogenic Belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).

    Google Scholar

    [58] Yang X L. 2007. Geological characteristics and study of detrital zircon Geochronology of epimetamorphic rock series in Zhalantun area[D]. Jilin University Master's Degree Thesis(in Chinese with English abstract).

    Google Scholar

    [59] Ye H W, Zhang X Z, Zhou Y W. 1994. 40Ar−39Ar age and its geologic significance of vein crossite in glaucophane−schist, Mudanjiang area[J]. Journal of changchun university of earth sciences, 24(4): 369−372(in Chinese with English abstract).

    Google Scholar

    [60] Yin J Y, Yuan C, Sun M, et al. 2010. Late Carboniferous high−Mg dioritic dikes in western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 17: 145−152. doi: 10.1016/j.gr.2009.05.011

    CrossRef Google Scholar

    [61] Yogodzinski G M, Kay R W, Volynets O N, et al. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge[J]. Geological Society of America Bulletin, 107(5): 505−519. doi: 10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2

    CrossRef Google Scholar

    [62] Yuan H L, Wu F Y, Gao S, et al. 2003. U−Pb dating and rare earth element composition analysis of the Cenozoic human body invasion in northeast China[J]. Chinese Science Bulletin, (14): 1511−1520(in Chinese).

    Google Scholar

    [63] Zhang J F, Li Z T, Jin C Z. 2004. Adakites in northeastern China and their mineralized implications[J]. Acta Petrologica Sinica, 20(2): 361−369(in Chinese with English abstract).

    Google Scholar

    [64] Zhang Q, Qian Q, Wang E Q, et al. 2001a. An East China plateau in Mid−Late Yanshanian period: Implication from adakites[J]. Chinese Journal of Geology, 36(2): 248−255(in Chinese with English abstract).

    Google Scholar

    [65] Zhang Q, Wang Y, Qian Q, et al. 2001b. The characteristics and tectonic−metal logenic significances of the adakites in Yanshan period from eastern China[J]. Acta Petrologica Sinica, 17(2): 236−244(in Chinese with English abstract).

    Google Scholar

    [66] Zhang Q, Qian Q, Zhai M G, et al. 2005. Geochemistry petrogenesis and geodynamic implications of sanukite[J]. Acta Petrologica et Mineralogica, (2): 117−125(in Chinese with English abstract).

    Google Scholar

    [67] Zhang Y X, Xie C M, Yu Y P, et al. 2018. The Early Jurassic subduction of Neo−Tethyan oceanic slab: Constraints from zircon U−Pb age and Hf isotopic compositions of Sumdo high−Mg diorite[J]. Geological Bulletin of China, 37(8): 1387−1399(in Chinese with English abstract).

    Google Scholar

    [68] Zhou J B, Wang B, Zeng W S, et al. 2014. Detrital zircon U−Pb dating of the Zhalantun Metamorphic Complex and its tectonic implications, Great Xing’an, NE China[J]. Acta Petrologica Sinica, 30(7): 1879−1888(in Chinese with English abstract).

    Google Scholar

    [69] 邓晋福, 刘翠, 冯艳芳, 等. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩 类[J]. 中国地质, 37(4): 1112−1118. doi: 10.3969/j.issn.1000-3657.2010.04.025

    CrossRef Google Scholar

    [70] 葛梦春, 周文孝, 于洋, 等. 2011. 内蒙古锡林郭勒杂岩解体及表壳岩系年代确定[J]. 地学前缘, 18(5): 182−195.

    Google Scholar

    [71] 李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 44(4): 339−347. doi: 10.3321/j.issn:0371-5736.1998.04.002

    CrossRef Google Scholar

    [72] 李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44(10): 3157−3177.

    Google Scholar

    [73] 李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化[J]. 海洋地质与第四纪地质, 18(3): 45−54.

    Google Scholar

    [74] 李印, 凌明星, 丁兴, 等. 2009. 中国东部埃达克岩及成矿作用[J]. 大地构造与成矿学, 33(3): 448−464. doi: 10.3969/j.issn.1001-1552.2009.03.016

    CrossRef Google Scholar

    [75] 梁爽, 彭玉鲸, 姜正龙. 2009. 松辽盆地基底“多层结构”的探讨及其意义[J]. 世界地质, 28(4): 430−437,475. doi: 10.3969/j.issn.1004-5589.2009.04.004

    CrossRef Google Scholar

    [76] 刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    CrossRef Google Scholar

    [77] 刘永江, 张兴洲, 迟效国, 等. 2011. 大兴安岭地区上古生界变形特征及构造层划分[J]. 吉林大学学报(地球科学版), 41(5): 1304−1313.

    Google Scholar

    [78] 刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047.

    Google Scholar

    [79] 马永非. 2019. 大兴安岭中段晚古生代构造演化研究[D]. 吉林大学博士学位论文.

    Google Scholar

    [80] 马永非, 刘永江, 秦涛, 等. 2022. 嫩江洋闭合机制: 来自内蒙古东南部扎赉特旗地区音德尔杂岩构造变形样式与时代的启示[J]. 岩石学报, 38(8): 2419−2441. doi: 10.18654/1000-0569/2022.08.11

    CrossRef Google Scholar

    [81] 潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−4. doi: 10.3969/j.issn.1000-3657.2009.01.001

    CrossRef Google Scholar

    [82] 裴福萍, 许文良, 杨德彬, 等. 2006. 松辽盆地基底变质岩中锆石U−Pb年代学及其地质意义[J]. 科学通报, 51(24): 2881−2887. doi: 10.3321/j.issn:0023-074X.2006.24.012

    CrossRef Google Scholar

    [83] 钱程, 陆露, 秦涛, 等. 2018. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳−兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 92(11): 2190−2214. doi: 10.3969/j.issn.0001-5717.2018.11.002

    CrossRef Google Scholar

    [84] 邱连贵, 任凤楼, 曹忠祥, 等. 2008. 胶东地区晚中生代岩浆活动及对大地构造的制约[J]. 大地构造与成矿学, 32(1): 117−123. doi: 10.3969/j.issn.1001-1552.2008.01.015

    CrossRef Google Scholar

    [85] 时溢, 陈井胜, 魏明辉, 等. 2020. 古亚洲洋东段晚古生代演化过程: 辽宁北部法库地区花岗岩年代学和地球化学的制约[J]. 岩石学报, 36(11): 3287−3308. doi: 10.18654/1000-0569/2020.11.03

    CrossRef Google Scholar

    [86] 宋彪, 张玉海, 万渝, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26−30.

    Google Scholar

    [87] 汪岩, 付俊彧, 那福超, 等. 2013. 内蒙古扎赉特旗辉长岩−闪长岩地球化学特征和 LA−ICP−MS 锆石 U−Pb年龄[J]. 地质通报, 32(10): 1525−1535. doi: 10.3969/j.issn.1671-2552.2013.10.004

    CrossRef Google Scholar

    [88] 吴松洋, 侯林, 丁俊, 等. 2017. 贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据[J]. 地质通报, 36(2/3): 445−458.

    Google Scholar

    [89] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [90] 武广, 孙丰月, 赵财胜, 等. 2005. 额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J]. 科学通报, 50(20): 2278−2288. doi: 10.3321/j.issn:0023-074X.2005.20.017

    CrossRef Google Scholar

    [91] 徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初 探[J]. 岩石学报, 30(7): 1841−1857.

    Google Scholar

    [92] 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    Google Scholar

    [93] 杨现力. 2007. 扎兰屯浅变质岩系地质特征及碎屑锆石年代学研 究[D]. 吉林大学硕士学位论文.

    Google Scholar

    [94] 叶慧文, 张兴洲, 周裕文. 1994. 牡丹江地区蓝片岩中脉状青铝闪石40Ar− 39Ar年龄及其地质意义[J]. 长春地质学院学报, 24(4): 369−372.

    Google Scholar

    [95] 袁洪林, 吴福元, 高山, 等. 2003. 东北地区新生代侵入体的锆石激光探针U−Pb年龄测定与稀土元素成分分析[J]. 科学通报, (14): 1511−1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    CrossRef Google Scholar

    [96] 张炯飞, 李之彤, 金成洙. 2004. 中国东北部地区埃达克岩及其成矿意义[J]. 岩石学报, 20(2): 361−369. doi: 10.3321/j.issn:1000-0569.2004.02.016

    CrossRef Google Scholar

    [97] 张旗, 钱青, 王二七, 等. 2001a. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 36(2): 248−255. doi: 10.3321/j.issn:0563-5020.2001.02.014

    CrossRef Google Scholar

    [98] 张旗, 王焰, 钱青, 等. 2001b. 中国东部燕山期埃达克岩的特征及其构 造−成矿意义[J]. 岩石学报, (2): 236−244. doi: 10.3969/j.issn.1000-0569.2001.02.008

    CrossRef Google Scholar

    [99] 张旗, 钱青, 翟明国, 等. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义[J]. 岩石矿物学杂志, (2): 117−125. doi: 10.3969/j.issn.1000-6524.2005.02.005

    CrossRef Google Scholar

    [100] 张雨轩, 解超明, 于云鹏, 等. 2018. 早侏罗世新特提斯洋俯冲作用—— 来自松多高镁闪长岩锆石U−Pb定年及Hf同位素的制约[J]. 地质通报, 37(8): 1387−1399. doi: 10.12097/j.issn.1671-2552.2018.08.003

    CrossRef Google Scholar

    [101] 周建波, 王斌, 曾维顺, 等. 2014. 大兴安岭地区扎兰屯变质杂岩的碎屑锆石U−Pb年龄及其大地构造意义[J]. 岩石学报, 30(7): 1879−1888.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(570) PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint