2024 Vol. 43, No. 8
Article Contents

LIU Xin, ZHANG Sen, HONG Hanlie, JIN Shanhe, ZHONG Hui, WU Yue, JU Nan, SHI Lu. 2024. The genesis of Qichun liemazui granite and its relationship with molybdenum mineralization. Geological Bulletin of China, 43(8): 1417-1429. doi: 10.12097/gbc.2022.03.021
Citation: LIU Xin, ZHANG Sen, HONG Hanlie, JIN Shanhe, ZHONG Hui, WU Yue, JU Nan, SHI Lu. 2024. The genesis of Qichun liemazui granite and its relationship with molybdenum mineralization. Geological Bulletin of China, 43(8): 1417-1429. doi: 10.12097/gbc.2022.03.021

The genesis of Qichun liemazui granite and its relationship with molybdenum mineralization

More Information
  • Qichun Liemazui molybdenum mine in Hubei Province is located on the southern slope of Dabie Mountain. Proven large molybdenum mines are rarely reported. There are few in−depth studies on this mining area, and there is a lack of accurate determination of the diagenetic and mineralization age, genesis and tectonic setting. In this paper, the Liemazui ore−forming granite was selected for petrographic, and petrochemical studies. The experimental results indicate that the ore−forming rocks are porphyry monzogranite or monzogranite−porphyry by petrographic analysis. The ore−forming scale of the mining area is small. The ore is disseminated or veined disseminated. The isochronous age of molybdenite in liemazui deposit is 119±8 Ma, the weighted mean age was 118.9±0.98 Ma. Therefore, the Liemazui molybdenum deposit is formed in the Early Cretaceous. Geochemical data show that it is a high−silicon, high−potassium, calc−alkaline series A−type granite. The total amount of rare earth elements is high, the light rare earth elements are enriched, and the heavy rare earth elements are relatively deficient. The rocks related to metallogenic formation in the Liemazui molybdenum mining area were formed in the extensional environment of the Dabie orogenic belt, and were related to the thinning of the lithosphere in the Late Yanshanian period.

  • 加载中
  • [1] Bureau of Geology and Mineral Resources of Hubei Province. 1990. Regional Geological Records of Hubei Province[M]. Geology Press (in Chinese with English abstract).

    Google Scholar

    [2] Chen L, Ma C Q, Zhang J Y M, et al. 2012. The first geological map of intrusive rocks in Dabie orogenic belt and its adjacent areas and its explanatory notes[J]. Geological Bulletin of China, 31(1): 13−18 (in Chinese with English abstract).

    Google Scholar

    [3] Chen W, Zhou W P, Chen K X, et al. 2014. Re−Os isotopic dating on molybdenite and its geological signficance from the Baiyashan molybdenum deposit in Machen City, Hubei Province[J]. Resources Environment & Engineering, 28(6): 781−785 (in Chinese with English abstract).

    Google Scholar

    [4] Chen Y J, Wang P, Li N, et al. 2017. The collision−type porphyry Mo deposits in Dabie Shan, China[J]. Ore Geology Reviews, 81(2): 405−430.

    Google Scholar

    [5] Du A D, He H L, Yin N, et al. 1994. A study on the Re−Os geochro−nometry of molybdenites[J]. Acta Geologica Sinica, 4: 339−347 (in Chinese with English abstract).

    Google Scholar

    [6] Du D W, Hong H L, Fan K, et al. 2012. Characteristics of molybdenum polymetallic soil anomalies and ore−prospecting prospects in limazui, Qichun County, Hubei Province[EB/OL](2012-05-31)[2020-01-12]. http://www.paper.edu.cn (in Chinese with English abstract).

    Google Scholar

    [7] Du D W, Hong H L, Fan K, et al. 2013. Study on the fine structure of K−Feldspar of Qichun granite[J]. Spectroscopy and Spectral Analysis, 33(3): 613−617 (in Chinese with English abstract).

    Google Scholar

    [8] Fan H, Wang D, Santosh M, et al. 2014. Genesis of the Yuanlingzhai porphyry molybdenum deposit, Jiangxi Province, South China: Constraints from petrochemistry and geochronology[J]. Journal of Asian Earth Sciences, 79(pt.B): 759−776.

    Google Scholar

    [9] Fu Z G, Jin Y H, Wu F, et al. 2007. Geological characteristics of host rocks of 5 mega Mo deposits in East Qinling−Dabie[J]. Contributions to Geology and Minerel Resources Research, 22(4): 277−281 (in Chinese with English abstract).

    Google Scholar

    [10] Gong Y J, Jiang Z, Chen D M, et al. 2017. Re−Os isotopic ages of Limuling molybdenum deposit in southern Dabie Mountain and their geological significance[J]. Mineral Deposits, 36(4): 992−1002 (in Chinese with English abstract) .

    Google Scholar

    [11] Guo H, Liu H X, Wang R H, et al. 2002. Characteristics of Mesozoic tectonic evolution in the Dabie Mountains orogenic belt[J]. Uranium Geology, (6): 321−327 (in Chinese with English abstract).

    Google Scholar

    [12] Hao J, Liu X H. 2003. Discovery of eclogites in the Qichun areas in the southernslope of the Dabie Mountains and some related problems[J]. Geological Bulletin of China, 22(10): 798−802 (in Chinese with English abstract).

    Google Scholar

    [13] Huang F, Wang D H, Lu S M, et al. 2011. Molybdenite Re−Os isotopic age of Shapinggou Mo deposit in Anhui Province and Mesozoic Mo ore−forming stages in East Qinling−Dabie Mountain region[J]. Mineral Deposits, 30(6): 1039−1057(in Chinese with English abstract).

    Google Scholar

    [14] Jian W, Liu W, Shi L H. 2010. Advances in study of porphyry molybdenum deposits[J]. Mineral Deposits, 29(2): 308−316 (in Chinese with English abstract).

    Google Scholar

    [15] Jiang T, Qiu X F, Lu S S. 2019. Petrogenesis of the Qijianfeng granite in southern Tongbai−Dabie orogenic belt: Constraints from geochemistry, zircon U−Pb age and Hf isotope[J]. Geology in China, 47(4): 1109−1126 (in Chinese with English abstract).

    Google Scholar

    [16] Li J P, Li Y F, Luo Z Z, et al. 2011. Geological features of molybdenum deposits and ore prospecting in Northern Slope of the Dabie Mountain, China[J]. Geotectonica et Metallogenia, 35(4): 576−586. (in Chinese with English abstract).

    Google Scholar

    [17] Liu C, Guochunzhao, Liu F. 2020. Coexistence of A− and I−type granites in the Lüliang Complex: Tectonic implications for the middle Paleoproterozoic Trans North China Orogen, North China Craton[J]. Lithos, 380/381: 105875.

    Google Scholar

    [18] Liu Q Q, Liu Y H, Li Y F, et al. 2013. Metallogenic conditions and genesis of porphyry molybdenum deposit in the northern piedmont of Dabieshan Mountain[J]. Contributions to Geography and Mineral Resources Research, 28(1): 27−33 (in Chinese with English abstract).

    Google Scholar

    [19] Liu X. 2013. Geochemical characteristics and their indication for molybdenum mineralization of the Cretaceous granite at Hubei, Qichun[D]. China University of Geosciences(Wuhan)(in Chinese with English abstract).

    Google Scholar

    [20] Liu X, Wu Y, Jin S H. 2021. U−Pb zircon age of Lianhuashan pluton in the junction of Anhui−Zhejiang−Jiangxi Province: Geological Implication[J]. Geology and Resources, 30(6): 666−674 (in Chinese with English abstract).

    Google Scholar

    [21] Lu X X, Li M L, Wei X D, et al. 2006. Geological geochemistry characteristics of porphyry molybdenum deposits in East Qin Mountains[J]. Geology of Yunnan, 4: 415−417 (in Chinese with English abstract).

    Google Scholar

    [22] Lu X X, Luo Z H, Huang F, et al. 2009. Study on the relationship between Qin Mountains−Dabie Mountains granites and molybdenum deposits[J]. Acta Mineralogica Sinica, A1: 445−446 (in Chinese with English abstract) .

    Google Scholar

    [23] Lu X X, Luo Z H, Huang F, et al. 2011. Mo deposit types and mineralization assemblage characteristics in Qinling−Dabie Mountain area[J]. Geology in China, 38(6): 1518−1535 (in Chinese with English abstract).

    Google Scholar

    [24] Luo Y N, Chen J W, Wang Y, et al. 2016. Tectonomagmatic activity and Mo metallogeny in the Qinling−Dabie Orogenic Belt[J]. Acta Geologica Sichuan, 36(2): 234−238,257. (in Chinese with English abstract).

    Google Scholar

    [25] Luo Z Z, Li Y F, Wang Y T, et al. 2010. The molybdenite Re−Os age of Dayinjian molybdenum deposit in the northern margin of the Dabie Mountain, Xinxian area, Henan, China and its significance[J]. Geological Bulletin of China, 29(9): 1349−1354 (in Chinese with English abstract).

    Google Scholar

    [26] Luo Z Z. 2010. Metallogenic regularity and prospecting direction of Mo−Au−Ag polymetallic deposit of north piedmont of Dabieshan[J]. Mineral Resources and Geology, 24(2): 125−131 (in Chinese with English abstract).

    Google Scholar

    [27] Ma C Q, Yang K G, Ming H L, et al. 2003. Mesozoic crust transition from compression to extension in Dabie Mountains: Evidence from granite[J]. Science in China (Ser.D), 33(9): 817−827(in Chinese with English abstract) .

    Google Scholar

    [28] Ma Y, Sun S Q, Wu C X, et al. 2013. Zircon U−Pb ages and petro−geochemistry of Liemazui granite, Qichuan County, Huibei Province, China[J]. Acta Mineralogica Sinica, 33(4): 698−704 (in Chinese with English abstract).

    Google Scholar

    [29] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [30] Mao J W, Zhang Z H. 1999. Re−Os age dating of molybdenites in the Xiaoliugou tungsten deposit in the Northern Qlilian moutains and its signifcance[J]. Geological Review, 45(4): 412−417 (in Chinese with English abstract).

    Google Scholar

    [31] Mao J W, Pirajno F, Xiang J F, et al. 2011. Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: Characteristics and tectonic settings[J]. Ore Geology Reviews, 43(1): 264−293. doi: 10.1016/j.oregeorev.2011.07.009

    CrossRef Google Scholar

    [32] Mao J W, Xie G Q, Bierlein F, et al. 2008. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 72(18): 4607−4626. doi: 10.1016/j.gca.2008.06.027

    CrossRef Google Scholar

    [33] Middlemost E A K. 1985. Magmas and magmatic rocks: An introduction to igneous petrology[M]. Longman, DOI:10.1180/minmag.1986.050. 355.34.

    Google Scholar

    [34] Ni P, Wang G G, Yu W, et al. 2015. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China[J]. Ore Geology Reviews, 65(4): 1078−1094.

    Google Scholar

    [35] Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 58(1): 63−81.

    Google Scholar

    [36] Qu W J, Du A D. 2003. Highly Precise Re−Os dating of molybdenite by ICP−MS with Carius Tube sample digestion[J]. Rock and Mineral Analysis, 22(4): 254−257 (in Chinese with English abstract).

    Google Scholar

    [37] Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 33(3): 267−309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    [38] Sirisokha S, Yonezu K, Tindell T, et al. 2019. Lithogeochemistry of intrusive rocks in the Halo porphyry copper−molybdenum prospect, Northeast Cambodia[J]. Open Journal of Geology, 9(7): 342−363. doi: 10.4236/ojg.2019.97023

    CrossRef Google Scholar

    [39] Smoliar M I, Walker R J, Morgan J W. 1996. Re−Os ages of group IIA, IIIA, IVA and VIB iron meteorites[J]. Science, 271: 1099−1102. doi: 10.1126/science.271.5252.1099

    CrossRef Google Scholar

    [40] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [41] Trevor H. Green. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust−mantle system[J]. Chemical Geology, 120: 347−359. doi: 10.1016/0009-2541(94)00145-X

    CrossRef Google Scholar

    [42] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 95(4): 407−419.

    Google Scholar

    [43] Wu S P, Wang M Y, Qi K J. 2007. Present situation of researches on A−type granites: A review[J]. Acta Petrological et Mineralogica, 26(1): 57−66 (in Chinese with English abstract).

    Google Scholar

    [44] Wu F Y, Li X H, Yang J H et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica sinica, 23(6): 1217−1238 (in Chinese with English abstract).

    Google Scholar

    [45] Ye X F, Zong K Q, Zhang Z M. 2013. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China, (C1): 307−317 (in Chinese with English abstract).

    Google Scholar

    [46] Ye X F, Cai L Y, Tu J H. 2014. Discussion on comprehensive prospecting information in Liemazui mining area, Qichun County, Hubei Province[J]. West−China Exploration Engineering, 26(12): 151−155(in Chinese with English abstract).

    Google Scholar

    [47] Yang M Z, Zeng J N, Qi Y J, et al. 2010. LA−ICP−MS zircon U−Pb and molybdenite Re−Os dating for Qian'echong porphyry−type Mo deposit in Northern Dabie, China, and its geological significance[J]. Geological Science and Technology Information, 29(5): 35−45 (in Chinese with English abstract).

    Google Scholar

    [48] Yang Z Q, Tang X W. 2015. Geochemical characteristics and zircon LA−ICP−MS U−Pb isotopic dating of the Xiaofan rock bodies in North Dabieshan[J]. Acta Geologica Sinica, 89(4): 692−700 (in Chinese with English abstract).

    Google Scholar

    [49] Zhang C, Ma C Q. 2008. Large−scale Late Mesozoic magmatism in the Dabie moutain: Constraints from zircon U−Pb and Hf isotopes[J]. Mineralogy and Petrology, 28(4): 71−79(in Chinese with English abstract).

    Google Scholar

    [50] Zhang S, Liu C, Ju N, et al. 2021. Geochemistry and provenance sandstone from Yaojia formation in central depression, Southern Songliao Basin[J]. Geology and Resources, 30(5): 544−554 (in Chinese with English abstract).

    Google Scholar

    [51] Zhong S Y, Yang C, Li S T, et al. 2020. Zircon U−Pb geochronology and geochemical characteristics of Taiyangnao rock mass in Qichun[J]. Resources Environment & Engineering, (34): 8−15,77 (in Chinese with English abstract).

    Google Scholar

    [52] Zhou W P, Ye X F, Teng X Q. 2013. Research of relationship between country rock alteration and mineralization in Liemazui molybdenum deposit, Qichun County[J]. Resources Environment & Engineering, 27(5): 714−719 (in Chinese with English abstract).

    Google Scholar

    [53] 陈玲, 马昌前, 张金阳, 等. 2012. 首编大别造山带侵入岩地质图(1∶50万)及其说明[J]. 地质通报, 31(1): 13−18. doi: 10.3969/j.issn.1671-2552.2012.01.002

    CrossRef Google Scholar

    [54] 陈炜, 周文平, 陈开旭, 等. 2014. 湖北麻城白鸭山钼矿床辉钼矿Re−Os同位素年龄测定及其地质意义[J]. 资源环境与工程, 28(6): 781−785. doi: 10.3969/j.issn.1671-1211.2014.06.003

    CrossRef Google Scholar

    [55] 杜安道, 何红蓼, 殷宁, 等. 1994. 辉钼矿的铼−锇同位素地质年龄测定方法研究[J]. 地质学报, 4: 339−347. doi: 10.3321/j.issn:0001-5717.1994.04.005

    CrossRef Google Scholar

    [56] 杜登文, 洪汉烈, 范坎, 等. 2012. 湖北省蕲春县烈马咀钼多金属土壤异常特征及找矿前景探讨[EB/OL]. (2012-05-31)[2020-01-12]. http:// www.paper.edu.cn.

    Google Scholar

    [57] 杜登文, 洪汉烈, 范坎, 等. 2013. 湖北蕲春花岗岩钾长石的结构状态研究[J]. 光谱学与光谱分析, 33(3): 613−617. doi: 10.3964/j.issn.1000-0593(2013)03-0613-05

    CrossRef Google Scholar

    [58] 付治国, 靳拥护, 吴飞, 等. 2007. 东秦岭—大别山5个特大型钼矿床的成矿母岩地质特征分析[J]. 地质找矿论丛, 22(4): 277−281. doi: 10.3969/j.issn.1001-1412.2007.04.007

    CrossRef Google Scholar

    [59] 郭华, 刘红旭, 王润红, 等. 2002. 大别山造山带中生代构造演化特 征[J]. 铀矿地质, (6): 321−327. doi: 10.3969/j.issn.1000-0658.2002.06.001

    CrossRef Google Scholar

    [60] 龚银杰, 江朱, 陈冬明, 等. 2017. 大别山南麓梨木岭钼矿床辉钼矿Re−Os同位素年龄及地质意义[J]. 矿床地质, 36(4): 992−1002.

    Google Scholar

    [61] 郝杰, 刘小汉. 2003. 大别山南坡蕲春等地榴辉岩的发现及相关问题[J]. 地质通报, 22(10): 798−802. doi: 10.3969/j.issn.1671-2552.2003.10.008

    CrossRef Google Scholar

    [62] 湖北省地质矿产局. 1990. 湖北省区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    [63] 黄凡, 王登红, 陆三明, 等. 2011. 安徽省金寨县沙坪沟钼矿辉钼矿Re−Os年龄——兼论东秦岭−大别山中生代钼成矿作用期次划 分[J]. 矿床地质, 30(6): 1039−1057. doi: 10.3969/j.issn.0258-7106.2011.06.005

    CrossRef Google Scholar

    [64] 简伟, 柳维, 石黎红. 2010. 斑岩型钼矿床研究进展[J]. 矿床地质, 29(2): 308−316. doi: 10.3969/j.issn.0258-7106.2010.02.012

    CrossRef Google Scholar

    [65] 江拓, 邱啸飞, 卢山松, 等. 2019. 桐柏—大别造山带南缘七尖峰花岗岩成因: 来自地球化学、锆石U−Pb年代学和Hf同位素的制约[J]. 中国地质, 47(4): 1109−1126.

    Google Scholar

    [66] 李俊平, 李永峰, 罗正传, 等. 2011. 大别山北麓钼矿找矿重大进展及其矿床地质特征研究[J]. 大地构造与成矿学, 35(4): 576−586. doi: 10.3969/j.issn.1001-1552.2011.04.011

    CrossRef Google Scholar

    [67] 刘清泉, 柳玉虎, 李永峰, 等. 2013. 大别山北麓斑岩型钼矿床成矿地质条件及矿床成因[J]. 地质找矿论丛, 28(1): 27−33. doi: 10.6053/j.issn.1001-1412.2013.01.004

    CrossRef Google Scholar

    [68] 刘欣. 2013. 湖北蕲春白垩纪花岗岩地球化学及对钼成矿作用的指 示[D]. 中国地质大学(武汉)硕士学位论文.

    Google Scholar

    [69] 刘欣, 伍月, 金珊合. 2021. 皖浙赣交界莲花山岩体U−Pb锆石年龄及其地质意义[J]. 地质与资源, 30(6): 666−674.

    Google Scholar

    [70] 卢欣祥, 李明立, 尉向东, 等. 2006. 东秦岭斑岩型钼矿地质地球化学特征[J]. 云南地质, 4: 415−417. doi: 10.3969/j.issn.1004-1885.2006.04.025

    CrossRef Google Scholar

    [71] 卢欣祥, 罗照华, 黄凡, 等. 2009. 秦岭—大别山花岗岩与钼矿的关系研究[J]. 矿物学报, A1: 445−446. doi: 10.3321/j.issn:1000-4734.2009.z1.234

    CrossRef Google Scholar

    [72] 卢欣祥, 罗照华, 黄凡, 等. 2011. 秦岭—大别山地区钼矿类型与矿化组合特征[J]. 中国地质, 38(6): 1518−1535. doi: 10.3969/j.issn.1000-3657.2011.06.012

    CrossRef Google Scholar

    [73] 骆亚南, 陈加伟, 王勇, 等. 2016. 秦岭大别造山构造岩浆活动与钼成矿规律[J]. 四川地质学报, 36(2): 234−238,257. doi: 10.3969/j.issn.1006-0995.2016.02.013

    CrossRef Google Scholar

    [74] 罗正传, 李永峰, 王义天, 等. 2010. 大别山北麓河南新县地区大银尖钼矿床辉钼矿Re−Os同位素年龄及其意义[J]. 地质通报, 29(9): 1349−1354. doi: 10.3969/j.issn.1671-2552.2010.09.011

    CrossRef Google Scholar

    [75] 罗正传. 2010. 大别山北麓钼金银多金属矿成矿规律及找矿方向[J]. 矿产与地质, 24(2): 125−131. doi: 10.3969/j.issn.1001-5663.2010.02.005

    CrossRef Google Scholar

    [76] 马昌前, 杨坤光, 明厚利, 等. 2003. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学(D辑), 33(9): 817−827. doi: 10.3321/j.issn:1006-9267.2003.09.001

    CrossRef Google Scholar

    [77] 马元, 孙四权, 吴昌雄, 等. 2013. 湖北蕲春烈马咀花岗岩锆石U−Pb年龄和岩石地球化学特征[J]. 矿物学报, 33(4): 698−704.

    Google Scholar

    [78] 毛景文, 张作衡. 1999. 北祁连山小柳沟钨矿床中辉相矿Re−Os年龄测定及其意义[J]. 地质论评, 45(4): 412−417. doi: 10.3321/j.issn:0371-5736.1999.04.012

    CrossRef Google Scholar

    [79] 屈文俊, 杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 22(4): 254−257,262. doi: 10.3969/j.issn.0254-5357.2003.04.003

    CrossRef Google Scholar

    [80] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [81] 吴锁平, 王梅英, 戚开静. 2007. A型花岗岩研究现状及其述评[J]. 岩石矿物学杂志, 26(1): 57−66. doi: 10.3969/j.issn.1000-6524.2007.01.009

    CrossRef Google Scholar

    [82] 叶晓峰, 宗克清, 张泽明, 等. 2013. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, (C1): 307−317. doi: 10.3969/j.issn.1671-2552.2013.02.010

    CrossRef Google Scholar

    [83] 叶学峰, 蔡立元, 屠江海. 2014. 湖北省蕲春县烈马咀矿区综合找矿信息探讨[J]. 西部探矿工程, 26(12): 151−155. doi: 10.3969/j.issn.1004-5716.2014.12.050

    CrossRef Google Scholar

    [84] 杨梅珍, 曾键年, 覃永军, 等. 2010. 大别山北缘千鹅冲斑岩型钼矿床锆石U−Pb和辉钼矿Re−Os年代学及其地质意义[J]. 地质科技情报, 29(5): 35−45.

    Google Scholar

    [85] 杨泽强, 唐相伟. 2015. 北大别山肖畈岩体地球化学特征和锆石LA−ICP−MS U−Pb同位素定年[J]. 地质学报, 89(4): 692−700. doi: 10.3969/j.issn.0001-5717.2015.04.003

    CrossRef Google Scholar

    [86] 张超, 马昌前. 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U−Pb年龄和Hf同位素制约[J]. 矿物岩石, 28(4): 71−79. doi: 10.3969/j.issn.1001-6872.2008.04.013

    CrossRef Google Scholar

    [87] 张森, 刘超, 鞠楠, 等. 2021. 松辽盆地南部中央凹陷区姚家组砂岩地球化学特征及沉积物源[J]. 地质与资源, 30(5): 544−554.

    Google Scholar

    [88] 钟石玉, 杨成, 李书涛, 等. 2020. 蕲春太阳脑岩体锆石U−Pb年代学及岩石地球化学特征研究[J]. 资源环境与工程, (34): 8−15,77.

    Google Scholar

    [89] 周文平, 叶学峰, 滕雪琴. 2013. 蕲春县烈马咀钼矿围岩蚀变与成矿关系探讨[J]. 资源环境与工程, 27(5): 714−719. doi: 10.3969/j.issn.1671-1211.2013.05.024

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(760) PDF downloads(105) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint