2024 Vol. 43, No. 10
Article Contents

LI Hongbin, XU Weijun, DONG Guochen, CHANG Zeguang, LI Huawei, TANG Jiahui, SU Lin, LIANG Jingli. 2024. Geochemical characteristics and metallogenic significance of granitic rock mass from the Baizhangzi gold deposit in western Liaoning. Geological Bulletin of China, 43(10): 1756-1774. doi: 10.12097/gbc.2023.08.005
Citation: LI Hongbin, XU Weijun, DONG Guochen, CHANG Zeguang, LI Huawei, TANG Jiahui, SU Lin, LIANG Jingli. 2024. Geochemical characteristics and metallogenic significance of granitic rock mass from the Baizhangzi gold deposit in western Liaoning. Geological Bulletin of China, 43(10): 1756-1774. doi: 10.12097/gbc.2023.08.005

Geochemical characteristics and metallogenic significance of granitic rock mass from the Baizhangzi gold deposit in western Liaoning

More Information
  • The Baizhangzi gold deposit in western Liaoning is among the largest gold deposits within the Jidong−Liaoxi metallogenic belt, where Mesozoic magmatism has led to the formation of granitic rock mass closely associated with gold ore. On the basis of field investigation, we have identified that the Baizhangzi granite consists of biotite monzogranite, biotite−bearing monzogranite, monzogranite and granitic porphyry dykes, and studied petrology, petrogeochemistry, chronology and Hf isotopic characteristics. The zircon U−Pb ages of granitic porphyry dykes were determined to be 231.0 ± 1.3 Ma and 231.7 ± 2.7 Ma, indicating formation in the Late Triassic. The major elements of Baizhangzi granitic rock mass exhibit characteristics of a high−K calc−alkaline series, displaying quasi−aluminum to weakly peraluminous granite composition; while the trace elements show enrichment in Rb, Th, U, K, Hf and depletion in Nb, Ba, P, Ti without obvious Eu and Ce anomalies. Additionally, there is relative enrichment in light rare earth elements and depletion in heavy rare earth elements placing it within the Post−COLG on tectonic setting discrimination diagrams. The Harker diagram and rare element covariant relationship indicate fractional crystallization of biotite, potassium feldspar, apatite, ilmenite and spar from biotite monzogranite to granitic porphyry dykes. The zircon Hf isotope analysis of the granitic porphyry dykes reveals εHf(t) values ranging from −9.02 to −5.62 (average −7.43), with two−stage Hf model ages (TMD2) ranging from 1592 Ma to 1810 Ma (average 1710 Ma), suggesting derivation of the magma through partial melting of Late Paleoproterozoic crust. The zircon rare elements in the granitic porphyry dykes show a △FMQ range from −1.23 to 4.65. The enrichment of alkali, high oxygen fugacity(fO2), and medium degree of evolution in granite porphyry dykes are favorable conditions for gold mineralization, indicating a strong potential for mineralization.

  • 加载中
  • [1] Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of Eastern Australia: implications for good−rich ore systems[J]. Resource Geology, 54: 241−252. doi: 10.1111/j.1751-3928.2004.tb00205.x

    CrossRef Google Scholar

    [2] Breiter K, Lamarao C N, Kras Borges R M. 2014. Chemical characteristics of zircon from A−type granites and comparison to zircon of S−type granites[J]. Lithos, 192/195: 208−225. doi: 10.1016/j.lithos.2014.02.004

    CrossRef Google Scholar

    [3] Chen X Y. 2021. Geological and Geochemical Characteristics and Geological Significance of Jinchangyu Intermediate−acid Dikes in East Hebei[D]. Master Thesis of Hebei GEO University (in Chinese with English abstract).

    Google Scholar

    [4] Cheng S B, Fu J M, Xu, D M, et al. 2009. Geochemical Characteristics and Petrogenensis of Xuehuading Granitic Batholith and its Enclaves, South China[J]. Geotectonica et Metallogenia, 33(4): 588−597 (in Chinese with English abstract).

    Google Scholar

    [5] Deng J F, Su S G, Zhao H L, et al. 2003. Deep Processes of Mesozoic YanShanian Lithosphere Thinning in North China[J]. Earth Science Frontiers, 10(3): 41−50 (in Chinese with English abstract).

    Google Scholar

    [6] Dong P S, Dong G C, Sun Z R, et al. 2018. Zircon U−Pb chronology, Hf isotopic compositions, geochemistry characteristics and geological significance of Shouw angfen complex in Yanshan region[J]. Earth Science Frontiers, 25(6): 264−276 (in Chinese with English abstract).

    Google Scholar

    [7] Dong P, Dong G, Santosh M, et al. 2020. Early cretaceous igneous activities in the north flank of the North China Craton: The Shouwangfen complex example[J]. International Geology Review, 62(6): 714−739. doi: 10.1080/00206814.2019.1631220

    CrossRef Google Scholar

    [8] Dong P, Dong G, Santosh M, et al. 2022. Eocene magmatism in the western Tengchong Block: Implications for crust−mantle interaction associated with the slab rollback of the Neo−Tethys Ocean[J]. Gondwana Research, 106: 259−280. doi: 10.1016/j.gr.2022.01.018

    CrossRef Google Scholar

    [9] Du D H, Yang Z M, Liu Y F, et al. 2015. Geology, alteration and mineralization of the Tinggong porphyry Cu deposit in southern Tibet[J]. Acta Petrologica et Mineralogica, 34(4): 447−474 (in Chinese with English abstract).

    Google Scholar

    [10] Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [11] Geng J Z, Li H K, Zhang J, et al. 2011. Zircon Hf isotope analysis by means of LA−MC−ICP−MS[J]. Geological Bulletin of China, 30(10): 34−39. (in Chinese with English abstract).

    Google Scholar

    [12] Geng S F. 2019. Baizhangzi gold deposit metallogenic geological features and metallogenic prediction in lingyuan city of Liaoning province, China[D]. Master Thesis of Jilin University (in Chinese with English abstract).

    Google Scholar

    [13] Guo S F, Tang Z L, Luo Z H, et al. 2009. Zircon SHRIMP U−Pb dating and geological significance from granite bodies in Tangzhangzi and Niuxinshan, eastern Hebei Province, China[J]. Geological Bulletin of China, 28(10): 1458−1464 (in Chinese with English abstract).

    Google Scholar

    [14] Han B F. 2007. Diverse post−collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 14(3): 64−72 (in Chinese with English abstract).

    Google Scholar

    [15] He W, Ye H S, Cao J. 2018. The study of zircon U−Pb ages and Hf isotopes of the intrusions of the Tangzhangzi Au ( Mo) poly−metallic deposit and the geological implications[J]. Acta Petrologica Sinica, 34(9): 2703−2715 (in Chinese with English abstract).

    Google Scholar

    [16] Hoskin P W O, Schaltegger U. 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27−62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [17] Ishihara S I. 1977. The Magnetite−series and Ilmenite−series Granitic Rocks[J]. Mining Geology, 27: 293−305.

    Google Scholar

    [18] Lentz D R, Fowler A D. 1992. A Dynamic Model for Graphic Quartz−Feldspar Intergrowths in Granitic Pegmatites in the Southwestern Grenville Province[J]. The Canadian Mineralogist, 30(3): 571−585.

    Google Scholar

    [19] Li H W. 2020. Genesis and deep prospecting of altered granite type orebody in Baizhangzi gold deposit, Liaoning province[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [20] Li J F, Fu J M, Ma C Q, et al. 2021. Zircon U−Pb ages, geochemical characteristics and geological significance of Jinjiling pluton in Nanling[J]. Earth Science, 46(4): 1231−1247 (in Chinese with English abstract).

    Google Scholar

    [21] Li W, Cheng Y, Yang Z. 2019. Geo‐fO2: Integrated software for analysis of magmatic oxygen fugacity[J]. Geochemistry, Geophysics, Geosystems, 20(5): 2542–2555.

    Google Scholar

    [22] Liégeois J P. 1998. Preface−Some words on the post−collisional magmatism[J]. Lithos, 45: XV−XVIII. doi: 10.1016/S0024-4937(98)00065-6

    CrossRef Google Scholar

    [23] Luo Z K, Li J J, Guan K, et a. 2004. SHRIMP zircon U Pb age of the granite at Baizhangzi gold field in Lingyuan, Liaoning Province[J]. Geological Survey and Research, 27(2): 82−85 (in Chinese with English abstract).

    Google Scholar

    [24] Luo Z K, Miao L C, Guan K, et al. 2003. SHRIMP U−Pb zircon dating of the Dushan granitic batholith and related granite−porphyry dyke, eastern Hebei Province, China, and their geological significance[J]. Geochimica, 32(2): 70−77 (in Chinese with English abstract).

    Google Scholar

    [25] Luo Z K, Qiu Y S, Guan K, et al. 2001. SHRIMP U−Pb dating on zircon from Yu’erya and Niuxinshan granite intrusions in eastern Hebei Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 278–285 (in Chinese with English abstract).

    Google Scholar

    [26] Maitre R W L. 1976. Some problems of the projection of chemical data into mineralogical classification[J]. Contributions to Mineralogy and Petrology, 56(2): 181−189. doi: 10.1007/BF00399603

    CrossRef Google Scholar

    [27] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [28] Mao J W, Zhang Z H, Yu J J, et al. 2003. Mesozoic tectonic setting of large scale ore−forming in east China and adjacent areas: revealed by precise ages of metallic deposits[J]. Science in China (series D), 33(4): 289−299 (in Chinese with English abstract).

    Google Scholar

    [29] Mao J W, Xie G Q, Zhang Z H, et al. 2005. Mesozoic large−scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica, 21(1): 169−188 (in Chinese with English abstract).

    Google Scholar

    [30] Miao L C, Qiu Y M, Fan W M. 2008. Mesozoic multi−phase magmatism and gold mineralization in the Early Precambrian North China craton, eastern Hebei Province, China: SHRIMP Zircon U−Pb Evidence[J]. International Geology Review, 50(9): 826−847. doi: 10.2747/0020-6814.50.9.826

    CrossRef Google Scholar

    [31] Middlemost E A K. 1994. Naming materials in the magma /igneous rock system[J]. Earth−science reviews, 37(3/4): 215−224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [32] Miller C F, David W M. 1984. Extreme fractionation in felsic magma chambers: a product of liquid−state diffusion or fractional crystallization?[J]. Earth and Planetary Science Letters, 68(1): 151−158. doi: 10.1016/0012-821X(84)90147-X

    CrossRef Google Scholar

    [33] Miller C F, McDowell, Susanne M, et al. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 31(6): 529. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    CrossRef Google Scholar

    [34] Othmar M, Peter B K, Timothy L G. 2001. The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study[J]. Contributions to Mineralogy and Petrology, 141(6): 643−658. doi: 10.1007/s004100100266

    CrossRef Google Scholar

    [35] Pearce J A, Harris N B W, Tindle A G. 1984. Trace Element Discrimination Diagrams for the Tectonic In−terpretation of Granitic Rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [36] Pichavant M, Montel J M, Richard L R. 1992. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison−Watson model[J]. Geochimica et Cosmochimica Acta, 56(10): 3855−3861. doi: 10.1016/0016-7037(92)90178-L

    CrossRef Google Scholar

    [37] Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247−263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [38] Rudnick R L, Gao S. 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4: 1−51.

    Google Scholar

    [39] Sláma J, Kosler J, Condon D J, et al. 2008. Plesovice zircon − A new natural reference material for U−Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249: 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [40] Su L. 2020. The granite in the Baizhangzi, western Liaoning and the significance of gold mineralization[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [41] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar

    [42] Wang C, Wei Q R, Liu X N, et al. 2014. Post−collision related late indosinian granites of Gangdise terrane: Evidences from zircom U−Pb geochronology and petrogeochemistry[J]. Earth Science–Journal of China University of Geosciences, 39(9): 1277−1288 (in Chinese with English abstract).

    Google Scholar

    [43] Wang X O. 2014. Geological characteristics and metallogenic model of the Baizhangzi gold deposit in Lingyuan, Liaoning Province[J]. Geology and Resources, 23(4): 339–342 (in Chinese with English abstract).

    Google Scholar

    [44] Wang, X W, Wang X D, 2002. Some diagnostic criteria for mineralized granite[J]. Acta Petrologica et Mineralogica, 21(2): 119–130 (in Chinese with English abstract).

    Google Scholar

    [45] Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64: 295−304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [46] Wei Q, Xuan L, Ma L, et al. 2016. Prospecting New Progress and Significance in Maojiadian–Baizhangzi Gold–concentrated Area[J]. NON–Ferrous Mining and Metallurgy, 32(3): 4−8 (in Chinese with English abstract).

    Google Scholar

    [47] Wei Y H. 1992. Stable Isotope Characteristics of Baizhangzi Gold Deposit in Liaoning[J]. Journal of Shenyang Institute of Gold Technology, 11(4): 20−26 (in Chinese with English abstract).

    Google Scholar

    [48] Whalen J B, Crurrie K L, Chappell B W. 1987. A−type granite: Geochemical characteristics, discrimination and petrogenesis[J]. Contribution to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [49] Wu F Y, Li X H, Yang J H, et al. 2007a. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238 (in Chinese with English abstract).

    Google Scholar

    [50] Wu F Y, Li X H, Zheng Y F, et al. 2007b. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 27(2): 185−220 (in Chinese with English abstract).

    Google Scholar

    [51] Xiong L, 2017. The Relationship between E volution of the Mesozoic Magmatic Rocks and Gold Metallogenesis in Eastern Hebei− western Liaoning District[D]. Ph.D Thesis of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    Google Scholar

    [52] Xu X Y, Jiang N, Fan W B, et al. 2016. Petrogenesis and geological implications for the Mesozoic granites in Qinglong area, eastern Hebei Province[J]. Acta Petrologica Sinica, 32(1): 212−232 (in Chinese with English abstract).

    Google Scholar

    [53] Xu X B, Wang L X, Ma C Q, et al. 2021. Petrogenesis and geological implications of the Yangfengou intermediate felsic dykes in the Balong area within the Eastern Kunlun orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 654–674 (in Chinese with English abstract).

    Google Scholar

    [54] Yan X, Chen B, Wang Z Q, et al. 2019. The petrogenesis of the two stage A −type granites from the Niujuan silver deposit in the northern margin of North China Craton and their tectonic implications[J]. Acta Petrologica Sinica, 35(2): 558−588 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.18

    CrossRef Google Scholar

    [55] Yang A X, Sun D Y, Hou X G, et al. 2021. Geochemical characteristics and geological significance of diorite of Yu'erya gold deposit area in Eastern Hebei Province[J]. Journal of Jilin University (Earth Science Edition), 51(2): 416−428 (in Chinese with English abstract).

    Google Scholar

    [56] Ye H. 2014. The Early Mesozoic magmatism and deformation in the east segment of the northern margin of the North China Craton[D]. Ph.D Thesis of China Academy of Geological Sciences (in Chinese with English abstract).

    Google Scholar

    [57] Zhang D Y, Wang S Z, Cao C, et al. 2022. Mesozoic magmatism and metallogenic significance in eastern Hebei gold belt: Evidence from zircon mineralogy[J]. Geological Review, 68(4): 1361−1374 (in Chinese with English abstract).

    Google Scholar

    [58] Zhang Q, Wang Y L, Jin W J, et al. 2008. Criteria for the recognition of pre−, syn− and post−orogenic granitic rocks[J]. Geological Bulletin of China, 27(1): 1−18 (in Chinese with English abstract).

    Google Scholar

    [59] Zhang S H, Zhao Y, Song B, et al. 2009. Contrasting Late Carboniferous and Late Permian--Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 121: 181–200.

    Google Scholar

    [60] Zhang S H, Zhao Y, Ye H, et al. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction[J]. Lithos, 155: 1−18. doi: 10.1016/j.lithos.2012.08.009

    CrossRef Google Scholar

    [61] Zhao H L, Deng J F, Di Y J, et al. 1997. The genesis and model of Yuerya gold deposit[J]. Earth Science, 22(3): 53−56(in Chinese with English abstract).

    Google Scholar

    [62] Zhao J H, Peng J T, Hu R Z, et al. 2005. Chronology, petrology, geochemistry and tectonic environment of Banxi quartz porphyry Dikes, Hunan Province[J]. Acta Geoscientica Sinica, 26(6): 525−534 (in Chinese with English abstract).

    Google Scholar

    [63] Zhao L. 2019. Geological characteristics and direction of altered granite type gold deposit in Baizhangzi, Liaoning Province[D]. Master Thesis of Jilin University (in Chinese with English abstract).

    Google Scholar

    [64] 陈显玉. 2021. 冀东金厂峪中酸性岩脉地质地球化学特征及地质意义[D]. 河北地质大学硕士学位论文.

    Google Scholar

    [65] 程顺波, 付建明, 徐德明, 等. 2009. 湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析[J]. 大地构造与成矿学, 33(4): 588−597. doi: 10.3969/j.issn.1001-1552.2009.04.013

    CrossRef Google Scholar

    [66] 邓晋福, 苏尚国, 赵海玲, 等. 2003. 华北地区燕山期岩石圈减薄的深部过程[J]. 地学前缘, 10(3): 41−50. doi: 10.3321/j.issn:1005-2321.2003.03.003

    CrossRef Google Scholar

    [67] 董朋生, 董国臣, 孙转荣, 等. 2018. 燕山地区寿王坟杂岩体锆石U−Pb年代学、Hf同位素和地球化学特征及其地质意义[J]. 地学前缘, 25(6): 264−276.

    Google Scholar

    [68] 杜等虎, 杨志明, 刘云飞, 等. 2015. 西藏厅宫斑岩铜矿床地质、蚀变及矿化特征研究[J]. 岩石矿物学杂志, 34(4): 447−474. doi: 10.3969/j.issn.1000-6524.2015.04.002

    CrossRef Google Scholar

    [69] 耿建珍, 李怀坤, 张健, 等. 2011. 锆石Hf同位素组成的LA−MC−ICP−MS测定[J]. 地质通报, 30(10): 34−39. doi: 10.3969/j.issn.1671-2552.2011.10.004

    CrossRef Google Scholar

    [70] 耿树峰. 2019. 辽宁省凌源市柏杖子金矿床成矿地质特征与成矿预测[D]. 吉林大学硕士学位论文.

    Google Scholar

    [71] 郭少丰, 汤中立, 罗照华, 等. 2009. 冀东唐杖子、牛心山花岗岩体锆石SHRIMP U−Pb定年及其地质意义[J]. 地质通报, 28(10): 1458−1464. doi: 10.3969/j.issn.1671-2552.2009.10.012

    CrossRef Google Scholar

    [72] 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 14(3): 64−72. doi: 10.3321/j.issn:1005-2321.2007.03.006

    CrossRef Google Scholar

    [73] 贺文, 叶会寿, 曹晶. 2018. 冀东唐杖子金(钼)多金属矿区侵入岩体锆石U−Pb年龄、Hf同位素特征及其地质意义[J]. 岩石学报, 34(9): 2703−2715.

    Google Scholar

    [74] 李华伟. 2020. 辽宁柏杖子金矿区蚀变花岗岩型矿体成因及深部找矿预测[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [75] 李剑锋, 付健明, 马昌前, 等. 2021. 南岭金鸡岭岩体锆石U−Pb年龄、地球化学特征及地质意义[J]. 地球科学, 46(4): 1231−1247.

    Google Scholar

    [76] 罗镇宽, 李俊健, 关康, 等. 2004. 辽宁凌源柏杖子金矿区花岗岩SHRIMP锆石U−Pb年龄[J]. 地质调查与研究, 27(2): 82−85.

    Google Scholar

    [77] 罗镇宽, 苗来成, 关康, 等. 2003. 冀东都山花岗岩基及相关花岗斑岩脉 SHRIMP 锆石 U−Pb年龄[J]. 地球化学, 32(2): 70−77.

    Google Scholar

    [78] 罗镇宽, 裘有守, 关康, 等. 2001. 冀东峪耳崖和牛心山花岗岩体 SHRIMP 锆石 U−Pb 定年及其意义[J]. 矿物岩石地球化学通报, 20(4): 278−285. doi: 10.3969/j.issn.1007-2802.2001.04.021

    CrossRef Google Scholar

    [79] 毛景文, 张作衡, 余金杰, 等. 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示[J]. 中国科学(D辑: 地球科学), 33(4): 289−299.

    Google Scholar

    [80] 毛景文, 谢桂青, 张作衡, 等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169−188. doi: 10.3321/j.issn:1000-0569.2005.01.017

    CrossRef Google Scholar

    [81] 苏麟. 2020. 辽西柏杖子花岗岩及其对金成矿意义[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [82] 王程, 魏启荣, 刘小念, 等. 2014. 冈底斯印支晚期后碰撞花岗岩: 锆石 U−Pb 年代学及岩石地球化学证据[J]. 地球科学—中国地质大学学报, 39(9): 1277−1288.

    Google Scholar

    [83] 王晓鸥. 2014. 辽宁凌源柏杖子金矿床地质特征及成矿模式[J]. 地质与资源, 23(4): 339−342.

    Google Scholar

    [84] 汪雄武, 王晓地. 2002. 花岗岩成矿的几个判别标志[J]. 岩石矿物学杂志, 21(2): 119−130. doi: 10.3969/j.issn.1000-6524.2002.02.005

    CrossRef Google Scholar

    [85] 魏强, 玄力, 马利, 等. 2016. 毛家店-柏杖子金矿集中区找矿新进展及意义[J]. 有色矿冶, 32(3): 4−8.

    Google Scholar

    [86] 魏有惠. 1992. 辽宁柏杖子金矿床稳定同位素特征[J]. 沈阳黄金学院学报, 11(4): 20−26.

    Google Scholar

    [87] 吴福元, 李献华, 杨进辉, 等. 2007a. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238.

    Google Scholar

    [88] 吴福元, 李献华, 郑永飞, 等. 2007b. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, 27(2): 185−220.

    Google Scholar

    [89] 熊乐. 2017. 冀东—辽西地区中生代岩浆演化与金成矿关系[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [90] 徐希阳, 姜能, 范文博, 等. 2016. 冀东青龙地区中生代花岗岩的岩石成因和地质意义[J]. 岩石学报, 32(1): 216−236.

    Google Scholar

    [91] 徐晓波, 王连训, 马昌前, 等. 2021. 东昆仑造山带巴隆地区羊粪沟中酸性岩脉成因及其地质意义[J]. 矿物岩石地球化学通报, 40(3): 654−674.

    Google Scholar

    [92] 严翔, 陈斌, 王志强, 等. 2019. 华北克拉通北缘牛圈银矿区两期A型花岗岩的成因及其构造意义[J]. 岩石学报, 35(2): 558−588.

    Google Scholar

    [93] 杨爱雪, 孙德有, 侯雪刚, 等. 2021. 冀东峪耳崖金矿区闪长岩脉地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 51(2): 416−428.

    Google Scholar

    [94] 叶浩. 2014. 华北北缘东段早中生代构造变形与岩浆作用研究[D]. 中国地质科学院博士学位论文.

    Google Scholar

    [95] 张岱岳, 王树志, 曹冲, 等. 2022. 冀东金矿带中生代岩浆作用及其成矿意义——来自锆石矿物学证据[J]. 地质论评, 68(4): 1361−1374.

    Google Scholar

    [96] 张旗, 王元龙, 金惟俊, 等. 2008. 造山前、造山和造山后花岗岩的识别[J]. 地质通报, 27(1): 1−18. doi: 10.3969/j.issn.1671-2552.2008.01.001

    CrossRef Google Scholar

    [97] 赵海玲, 邓晋福, 狄永军, 等. 1997. 河北峪耳崖金矿矿床成因及成矿模式[J]. 地球科学, 22(3): 53−56.

    Google Scholar

    [98] 赵军红, 彭建堂, 胡瑞忠, 等. 2005. 湖南板溪脉岩的年代学、岩石学、地球化学及其构造环境[J]. 地球学报, 26(6): 525−534. doi: 10.3321/j.issn:1006-3021.2005.06.007

    CrossRef Google Scholar

    [99] 赵亮. 2019. 辽宁柏杖子蚀变花岗岩型金矿地质特征及找矿方向[D]. 吉林大学硕士学位论文.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(5)

Article Metrics

Article views(382) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint