Citation: | HAN Yunting, LI Siyue, LUO Xie. 2024. Estimation of above-ground carbon storage in the Jiufengshan National Forest Park of Wuhan based on GF-2 images. Geological Bulletin of China, 43(4): 611-619. doi: 10.12097/gbc.2023.07.034 |
Exploring the potential of domestic high-resolution data in the estimation of forest carbon storage estimation research provides a new approach for the construction of forest carbon storage estimation model. In this study, the Jiufengshan National Forest Park in Wuhan City was selected, GF-2 remote sensing image was used as the data source, and ground measured information was combined to estimate forest AGC storage in the Park. A total of 6 vegetation indices, 4 band values and 8 texture features were extracted, and 9 remote sensing variables that related to measured carbon storage were screened out. Linear and nonlinear equations were used to model a single highly correlated variable and multiple correlated variables, and subsequently the optimal model was therefore selected. In order to further improve the prediction accuracy, the model was carried into four texture Windows (3×3, 5×5, 7×7, 9×9). The results showed that the vegetation index extracted from remote sensing images had strong collinearity, and the accuracy of the single variable model was lower than that of the multiple regression model. The root-mean-square (RMSE) and the coefficient of determination R² were used to evaluate the prediction accuracy of the model under four Windows. We showed that the model had the best prediction power under the 5×5 window (R²=0.73, RMSE=0.5), and the prediction power was the lowest under the 3×3 window (R²=0.64, RMSE=0.8), compared with all the estimated models, the accuracy of the model is improved by 0.11 in the texture window. Therefore, the constructed multivariate model was used to estimate carbon storage with a 5×5 window. The total carbon storage in the Jiufengshan National Forest Park was 1.06×104 t, the overall average carbon density was 84.59 t/hm2, it has a certain carbon fixation effect. Using domestically produced high-resolution image of GF-2 satellite imagery data to invert Jiufengshan Forest Park in Wuhan, it can be well used in the field of quantitative carbon storage and growth status of forest vegetation. The research has important scientific significance for the monitoring and management of forest carbon sink under the “carbon peaking and carbon neutrality” target.
[1] | Fang J Y, Chen A P, Peng C H, et al. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 292(5525): 2320−2322. doi: 10.1126/science.1058629 |
[2] | Moazzam N S. 2010. Estimation of carbon stocks in subtropical managed and unmanaged forests of Pakistan[C]//Thirteenth Sustainable Development Conference (SDC) 21-23 December 2010, Islamabad, Pakistan. DOI:10.1016/0167-5087(84)90186-8. |
[3] | Nandal A, Yadav S S, Rao A S, et al. 2023. Advance methodological approaches for carbon stock estimation in forest ecosystems[J]. Environmental Monitoring and Assessment, 195(2): 315. doi: 10.1007/s10661-022-10898-9 |
[4] | Pan Y, Birdsey R A, Fang J, et al. 2011. A large and persistent carbon sink in the world’s forests[J]. Science, 333(6045): 988−993. doi: 10.1126/science.1201609 |
[5] | Planck N R V, MacFarlane D W. 2015. A vertically integrated whole−tree biomass model[J]. Trees, 29: 449−460 |
[6] | Pragasan L A. 2022. Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India[J]. Geology, Ecology, and Landscapes, 6(1): 32−39. doi: 10.1080/24749508.2020.1742510 |
[7] | Qiao Y, Zheng G, Du Z, et al. 2023. Tree−species classification and individual−tree−biomass model construction based on hyperspectral and LiDAR data[J]. Remote Sensing, 15(5): 1341. doi: 10.3390/rs15051341 |
[8] | Sun W, Liu X. 2020. Review on carbon storage estimation of forest ecosystem and applications in China[J]. Forest Ecosystems, 7(1): 1−14. doi: 10.1186/s40663-019-0212-0 |
[9] | Wei M, Jiao L, Zhang P, et al. 2023. Spatio−temporal diversity in the link between tree radial growth and remote sensing vegetation index of qinghai spruce on the northeastern margin of the tibetan plateau[J]. Forests, 14(2): 260. doi: 10.3390/f14020260 |
[10] | Yang F, Jiang X, Ziegler A D, et al. 2023. Improved Fine−Scale Tropical Forest Cover Mapping for Southeast Asia Using Planet−NICFI and Sentinel−1 Imagery[J]. J. Remote Sens., 3: Article 0064. |
[11] | 鲍宽乐, 许文波, 王庆同. 2023. 基于机器学习的Landsat数据地层信息提取——以西南天山柯坪地区为例[J]. 地质通报, 42(4): 637−645. |
[12] | 曹海翊, 邱心怡, 贺涛. 2022. 森林生物量遥感卫星发展综述[J]. 光学学报, 42(17): 402−409. |
[13] | 丁增发. 2014. 安徽亚热带常绿阔叶林甜槠等4个优势树种的生物量模型及生长模型[J]. 安徽农业大学学报, 41(5): 859−865. |
[14] | 葛婧, 彭建松. 2023. 城市绿地碳储量估算方法分析[J]. 现代园艺, 46(12): 179−184. doi: 10.3969/j.issn.1006-4958.2023.12.059 |
[15] | 苟睿坤, 陈佳琦, 段高辉, 等. 2019. 基于GF-2的油松人工林地上生物量反演[J]. 应用生态学报, 30(12): 4031−4040. |
[16] | 菅永峰, 韩泽民, 黄光体, 等. 2021. 基于高分辨率遥感影像的北亚热带森林生物量反演[J]. 生态学报, 41(6): 2161−2169. |
[17] | 李兰, 陈尔学, 李增元, 等. 2016. 合成孔径雷达森林树高和地上生物量估测研究进展[J]. 遥感技术与应用, 31(4): 625−633. |
[18] | 李娜, 李清顺, 李宏韬. 2021. 祁连山国家公园青海片区森林植被碳储量与碳汇价值研究[J]. 浙江林业科技, 41(2): 41−46. doi: 10.3969/j.issn.1001-3776.2021.02.007 |
[19] | 李威, 黄玫, 张远东, 等. 2021. 中国国家森林公园碳储量及固碳速率的时空动态[J]. 应用生态学报, 32(3): 799−809. |
[20] | 蒙诗栎, 庞勇, 张钟军, 等. 2017. WorldView-2纹理的森林地上生物量反演[J]. 遥感学报, 21(5): 812−824. |
[21] | 倪欢, 牛晓楠, 李云峰, 等. 2021. 基于统计学习方法的安徽省安庆市自然资源自动化监测——以山体为例[J]. 地质通报, 40(10): 1656−1663. |
[22] | 潘腾. 2015. 高分二号卫星的技术特点[J]. 中国航天, 441(1): 3−9. |
[23] | 庞勇, 李增元, 余涛, 等. 2022. 森林碳储量遥感卫星现状及趋势[J]. 航天返回与遥感, 43(6): 1−15. |
[24] | 秦立厚, 张茂震, 钟世红, 等. 2017. 森林生物量估算中模型不确定性分析[J]. 生态学报, 37(23): 7912−7919. |
[25] | 邵文静, 孙伟伟, 杨刚. 2021. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 36(2): 431−440. |
[26] | 汤旭光, 刘殿伟, 王宗明, 等. 2012. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 31(5): 1311−1318. |
[27] | 汤煜, 石铁矛, 卜英杰, 等. 2020. 城市绿地碳储量估算及空间分布特征[J]. 生态学杂志, 39(4): 1387−1398. |
[28] | 王东明, 田世攀, 张昱,等. 2021. 森林-沼泽浅覆盖区地质填图方法试验——以黑龙江1∶5万望峰公社幅为例[J]. 地质通报, 40(5): 782−797. |
[29] | 乌迪, 巫明焱, 陈佳丽,等. 2019. 基于Landsat影像的梭磨乡冷杉林地上碳储量估测及其时空动态[J]. 生态科学, 38(1): 111−122. |
[30] | 魏吉鑫, 刘斯文, 李海潘, 等. 2020. 江西赣州废弃离子型稀土矿修复区植被高光谱特征与健康状况评价[J]. 地质通报, 39(12): 2037−2043. doi: 10.12097/j.issn.1671-2552.2020.12.017 |
[31] | 巫明焱, 董光, 王艺积,等. 2020. 川西米亚罗自然保护区森林地上碳储量遥感估算[J]. 生态学报, 40(2): 621−628. |
[32] | 徐丽华, 张结存, 黄博, 等. 2014. 基于QuickBird影像的城市森林碳储量遥感估测[J]. 应用生态学报, 25(10): 2787−2793. |
[33] | 续珊珊. 2014. 森林碳储量估算方法综述[J]. 林业调查规划, 39(6): 28−33. |
[34] | 岳春宇, 郑永超, 庞勇, 等. 2020. 卫星林业遥感系统及应用[J]. 卫星应用, 106(10): 51−55. doi: 10.3969/j.issn.1674-9030.2020.10.013 |
[35] | 殷鸣放, 杨琳, 殷炜达,等. 2010. 森林固碳领域的研究方法及最新进展[J]. 浙江林业科技, 30(6): 78−86. doi: 10.3969/j.issn.1001-3776.2010.06.018 |
[36] | 张桂莲, 邢璐琪, 张浪, 等. 2022. 城市绿地碳汇计量监测方法研究进展[J]. 园林, 39(1): 7. |
[37] | 张梦顺. 2022. 高光谱遥感影像中纹理特征的作用[J]. 工程技术研究, 7(12): 219−221. doi: 10.12361/2705-0513-04-12-105869 |
[38] | 郑吉林, 蔡艳龙, 郭晓宇,等. 2024. 基于InVEST模型的晋北土地利用变化与碳储量研究[J]. 地质通报, 43(1): 173−180. |
Sampling plots in the Jiufengshan National Forest Park
A scatter plot of measured and predicted values from regression model
Spatial distribution of carbon density