Citation: | HUANG Qianling, ZHAO Junlong, BAI Qian, XU Jianyuan. 2024. Automatic recognition of sedimentary microfacies based on Adaboost algorithm: Taking the Shanxi Formation in Q zone of Longdong gas field as an example. Geological Bulletin of China, 43(4): 658-666. doi: 10.12097/gbc.2023.04.030 |
In oil and gas field development, sedimentary micro-phase identification plays an important role in clarifying the sedimentary background and single sand body delineation. Only the bottom of Shan 1 section produces gas. For the analysis of sedimentary microfacies through multiple data intersections, relying solely on manual discrimination of sedimentary microfacies is a complex and error prone process, making it difficult to establish an accurate correspondence between sedimentary microfacies and logging data. Therefore, in order to make full use of the logging data and improve the efficiency of sediment microphase delineation, this paper proposes an automatic identification of sediment microphases based on Adaboost algorithm to provide a more accurate basis for sediment background and single sand body delineation for later gas field development. In the study, optimization and preprocessing of logging curves were carried out, and six feature parameters were extracted using mathematical statistical methods as the input set for training. The type of sedimentary microfacies was used as the output result label for training, and a total of 1210 groups are selected as training samples from the interpreted sedimentary microphase data, of which a total of about 968 groups of training samples are formed and 242 groups of test samples are formed. The results of the study show that the accuracy of the training results and test results of the application of the method reaches 96.45% and 90.4%, respectively, which can be verified that the method is better applied in Q area of Longdong gas field.
[1] | Bhattacharya S, Mishra S. 2018. Applications of machine learning for facies and fracture prediction using bayesian network theory and random forest: Case studies from the Appalachian basin, USA[J]. Journal of Petroleum Science and Engineering, 170: 1005−1017. |
[2] | Li L Y, Wei J C, Yin H Y, et al. 2018 . Influence of sedimentary facies on reservoir quality and distribution of diagenetie feantures in the Funing Formation, Wanglong Zhuang oilfield, Subei Basin , Eastern China [J]. Arabian Journal of Geosciences, 11: 432. |
[3] | 曹莹, 苗启广, 刘家辰, 等. 2013. AdaBoost算法研究进展与展望[J]. 自动化学报, 39(6): 745−758. |
[4] | 陈欢庆, 朱筱敏. 2008. 精细油藏描述中的沉积微相建模进展[J]. 地质科技情报, (2): 73−79. |
[5] | 陈靖. 2022. 基于录测井资料的沉积微相定量识别方法研究——以渤中26-X构造为例[J]. 石油地质与工程, 36(5): 21−27. doi: 10.3969/j.issn.1673-8217.2022.05.004 |
[6] | 国景星, 陈铭. 2018. 基于支持向量机的浊积扇沉积微相自动识别[J]. 甘肃科学学报, 30(2): 25−31. |
[7] | 韩文龙, 王延斌, 高向东, 等. 2016 . 基于BP神经网络的沉积微相识别[J]. 煤炭技术. 35(12): 114−116. |
[8] | 韩玉娇. 2022. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别[J]. 石油钻探技术, 50(1): 112−118. |
[9] | 李艳华, 王红涛, 王鸣川, 等. 2017 . 基于PCA和KNN的碳酸盐岩沉积相测井自动识别[J]. 测井技术, 41(1): 57−63. |
[10] | 梁云, 门昌骞, 王文剑. 2023. 基于模型决策树的AdaBoost算法[J]. 山东大学学报(理学版), 58(1): 67−75. |
[11] | 罗歆, 闫建平, 王军, 等. 2023. 基于FMI图像深度学习的砂砾岩体沉积微相识别方法——以东营凹陷北带Y920区块沙四上亚段为例[J]. 沉积学报, 41(4): 1138−1152. |
[12] | 罗仁泽, 周洋, 康丽侠, 等. 2022. 基于DMC-BiLSTM的沉积微相智能识别方法[J]. 石油物探, 61(2): 253−261, 338. doi: 10.3969/j.issn.1000-1441.2022.02.007 |
[13] | 邱晨, 闫建平, 钟光海, 等. 2023 . 深层页岩气地层沉积微相细分类型测井识别与应用——以四川盆地泸州地区五峰组−龙马溪组为例[J]. 岩性油气藏, 34(3): 1−13. |
[14] | 苏建龙, 蒲勇, 缪志伟, 等. 2020. 元坝地区灯影组四段丘滩体相控储层预测[J]. 石油物探, 59(4): 607−615. doi: 10.3969/j.issn.1000-1441.2020.04.011 |
[15] | 王宇喆. 2017. Sufyan油田AbuGabra组沉积微相识别方法[J]. 大庆石油地质与开发, 36(3): 44−48. |
[16] | 夏辉, 王龙, 张道锋, 等. 2022. 鄂尔多斯盆地庆阳气田二叠系山西组1段层序结构与沉积演化及其控制因素[J]. 石油与天然气地质, 43(6): 1397−1412, 1488. |
[17] | 赵忠军, 刘烨, 王凤琴, 等. 2016 . 基于支持向量机的辩状河测井沉积微相识别[J]. 测井技术, 40(5) : 637−642. |
[18] | 张苗燕. 2018 .基于Adaboost的铁路扣件完损性检测方法研究[D].兰州交通大学硕士学位论文. |
Adaboost algorithm training process diagram
Filter processing of GR and SP curves of well Q1 in the study area
Prediction confusion matrix based on Adaboost algorithm