2024 Vol. 43, No. 8
Article Contents

WANG Yunqiang, ZHANG Shaokang, ZHANG Pingping, YANG Yang. 2024. Research progress and prospect of soil hydrological processes in critical zone of the Loess Plateau. Geological Bulletin of China, 43(8): 1346-1360. doi: 10.12097/gbc.2023.02.046
Citation: WANG Yunqiang, ZHANG Shaokang, ZHANG Pingping, YANG Yang. 2024. Research progress and prospect of soil hydrological processes in critical zone of the Loess Plateau. Geological Bulletin of China, 43(8): 1346-1360. doi: 10.12097/gbc.2023.02.046

Research progress and prospect of soil hydrological processes in critical zone of the Loess Plateau

  • The Earth Critical Zone (CZ) is one of the frontiers and key fields of earth science in the 21st century. Loess accounts for about 10% of the global land area, and the Chinese Loess Plateau (CLP) is one of the typical Loess CZs. Soil hydrological processes drive a series of biogeochemical cycles at different scales in the CLP−CZ and determine the evolution direction and sustainability of the soil−vegetation−atmosphere continuum. Based on the "4M" research framework of the CZ science, we summarized the hot spots and frontiers of soil hydrological processes in the CLP−CZ, and then reviewed the research progresses of soil hydrological processes at different scales, including the observation methods and techniques, model simulation and mapping, and deep soil drying management. Based on this, focusing on the optimal utilization of soil water resources and the improvement of ecosystem service function in the CLP−CZ, the countermeasures and suggestions for the optimal management of soil hydrological processes in the CLP−CZ under the joint impact of global climate change and intense human activities were put forward, and the future trend of soil hydrological processes in the CLP−CZ was forecasted. A good understanding of this information is helpful to deepen the scientific understanding of the CLP−CZ research, promote the development of the CZs science, and provide scientific reference for the CLP natural resources optimization and mountains, rivers, forests, farmlands, lakes, and grasslands ecosystems management.

  • 加载中
  • [1] Amundson R, Richter D D, Humphreys G S, et al. 2007. Coupling between biota and earth materials in the critical zone[J]. Elements (Quebec), 3(5): 327−332. doi: 10.2113/gselements.3.5.327

    CrossRef Google Scholar

    [2] Arnold J G, Allen P M, Bernhardt G. 1993. A comprehensive surface−groundwater flow model[J]. Journal of Hydrology, 142(1): 47−69.

    Google Scholar

    [3] Arora V K, Gajri P R. 1996. Performance of simplified water balance models under maize in a semiarid subtropical environment[J]. Agricultural Water Management, 31(1): 51−64.

    Google Scholar

    [4] Bai X, Jia X X, Zhao C L, et al. 2021. Artificial forest conversion into grassland alleviates deep−soil desiccation in typical grass zone on China's loess plateau: Regional modeling[J]. Agriculture Ecosystems & Environment, 320: 107608.

    Google Scholar

    [5] Blöschl G, Cudennec C, Fiori A, et al. 2019. Twenty−three unsolved problems in hydrology (uph)−A community perspective[J]. Hydrological Sciences Journal, 64(10): 1141−1158. doi: 10.1080/02626667.2019.1620507

    CrossRef Google Scholar

    [6] Bouma J. 2012. Chapter 15−hydropedology as a powerful tool for environmental policy and regulations: Toward sustainable land use, management and planning[C]//Lin H. Hydropedology. Boston: Academic Press: 483−512.

    Google Scholar

    [7] Castellini M, Di Prima S, Stewart R, et al. 2022. Advances in ecohydrology for water resources optimization in arid and semi−arid areas[J]. Water, 14(12): 1830. doi: 10.3390/w14121830

    CrossRef Google Scholar

    [8] Celia M A, Bouloutas E T, Zarba R L. 1990. A general mass−conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 26(7): 1483−1496. doi: 10.1029/WR026i007p01483

    CrossRef Google Scholar

    [9] Chang X S, Chang G Q. 2021. Advances in research and prospect on soil moisture in arid and semi−arid areas[J]. Journal of Desert Research, 41(1): 156−163(in Chinese with English abstract).

    Google Scholar

    [10] Chen H, Shao M, Li Y. 2008. Soil desiccation in the loess plateau of China[J]. Geoderma, 143(1/2): 91−100. doi: 10.1016/j.geoderma.2007.10.013

    CrossRef Google Scholar

    [11] Chorover J, Kretzschmar R, Garcia−Pichel F, et al. 2007. Soil biogeochemical processes within the critical zone[J]. Elements, 3(5): 321−326.

    Google Scholar

    [12] Cleverly J, Eamus D, Restrepo Coupe N, et al. 2016. Soil moisture controls on phenology and productivity in a semi−arid critical zone[J]. Science of the Total Environment, 568: 1227−1237. doi: 10.1016/j.scitotenv.2016.05.142

    CrossRef Google Scholar

    [13] Dexter A R. 1988. Advances in characterization of soil structure[J]. Soil & Tillage Research, 11(3/4): 199−238.

    Google Scholar

    [14] Dexter A R, Young I M. 1992. Soil physics towards 2000[J]. Soil & Tillage Research, 24(2): 101−106.

    Google Scholar

    [15] Ding W B, Wang F. 2022. The effects of vegetation construction on soil moisture in the loess plateau of China[J]. Acta Ecologica Sinica, 42(13): 5531−5542(in Chinese with English abstract).

    Google Scholar

    [16] Fan J, Shao M A, Wang Q J, et al. 2010. Toward sustainable soil and water resources use in China's highly erodible semi−arid loess plateau[J]. Geoderma, 155(1/2): 93−100. doi: 10.1016/j.geoderma.2009.11.027

    CrossRef Google Scholar

    [17] Feng H M , Lei T W, Zhang J W, et al. 2009. An introduction of soil and water conservation legal system in USA[J]. Research of Soil and Water Conservation, 16(3): 276−280(in Chinese with English abstract).

    Google Scholar

    [18] Feng X, Fu B, Piao S, et al. 2016. Revegetation in China's loess plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 6(11): 1019. doi: 10.1038/nclimate3092

    CrossRef Google Scholar

    [19] Georgiou K, Jackson R B, Vinduskova O, et al. 2022. Global stocks and capacity of mineral−associated soil organic carbon[J]. Nature Communications, 13(1): 1−12.

    Google Scholar

    [20] Grunwald S. 2009. Multi−criteria characterization of recent digital soil mapping and modeling approaches[J]. Geoderma, 152(3): 195−207.

    Google Scholar

    [21] Grunwald S, Thompson J A, Boettinger J L. 2011. Digital soil mapping and modeling at continental scales: Finding solutions for global issues[J]. Soil Science Society of America Journal, 75(4): 1201−1213. doi: 10.2136/sssaj2011.0025

    CrossRef Google Scholar

    [22] Guan Y, Zhou W, Bai Z, et al. 2020. Soil nutrient variations among different land use types after reclamation in the Pingshuo opencast coal mine on the loess plateau, China[J]. Catena, 188: 104427. doi: 10.1016/j.catena.2019.104427

    CrossRef Google Scholar

    [23] Gutiérrez Jurado H A, Vivoni E R, Harrison J B J, et al. 2006. Ecohydrology of root zone water fluxes and soil development in complex semiarid rangelands[J]. Hydrological Processes, 20(15): 3289−3316. doi: 10.1002/hyp.6333

    CrossRef Google Scholar

    [24] Hartemink A E, Minasny B. 2016. Digital soil morphometrics[M]. Springer International Publishing.

    Google Scholar

    [25] He C S, Tian J, Zhang B Q, et al. 2021. A review of advances in impacts of soil hydraulic properties on hydrological processes, challenges and opportunities[J]. Advances in Earth Science, 36(2): 113−124(in Chinese with English abstract).

    Google Scholar

    [26] He H S, Mladenoff D J, Crow T R. 1999. Linking an ecosystem model and a landscape model to study forest species response to climate warming[J]. Ecological Modelling, 114(2/3): 213−233. doi: 10.1016/S0304-3800(98)00147-1

    CrossRef Google Scholar

    [27] Hengl T, de Jesus J M, Heuvelink G B M, et al. 2017. Soilgrids250m: global gridded soil information based on machine learning[J]. Plos One, 12(2): 1−40.

    Google Scholar

    [28] Huang L M, Shao M A. 2019. Advances and perspectives on soil water research in China's loess plateau[J]. Earth−Science Reviews, 199: 102962.

    Google Scholar

    [29] Huang M, Gallichand J. 2006. Use of the shaw model to assess soil water recovery after apple trees in the gully region of the loess plateau, China[J]. Agricultural Water Management, 85(1/2): 67−76. doi: 10.1016/j.agwat.2006.03.009

    CrossRef Google Scholar

    [30] Huang T M, Pang Z H. 2011. Estimating groundwater recharge following land−use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the loess plateau of China[J]. Hydrogeology Journal, 19(1): 177−186. doi: 10.1007/s10040-010-0643-8

    CrossRef Google Scholar

    [31] Huang T, Pang Z, Edmunds W M. 2013. Soil profile evolution following land−use change: implications for groundwater quantity and quality[J]. Hydrological Processes, 27(8): 1238−1252. doi: 10.1002/hyp.9302

    CrossRef Google Scholar

    [32] Hu M, Feng Q, Xi H Y. 2013. Progress of monitoring soil moisture by remote sensing in arid areas[J]. Chinese Journal of Soil Science, 44(5): 1270−1275(in Chinese with English abstract).

    Google Scholar

    [33] Jiao F, Wen Z M, Chen Y M. 2005. Mapping and quantitative analysis of soil moisture using GIS techniques[J]. Research of Soil and Water Conservation, 12(3): 129−131,177(in Chinese with English abstract).

    Google Scholar

    [34] Jiao F, Wen Z M, Chen Y M, et al. 2006. Mapping and quantitative analysis of soil moisture of Ansai county based on GIS techniques[J]. Science of Soil and Water Conservation, 4(1): 75−80(in Chinese with English abstract).

    Google Scholar

    [35] Jia X, Shao M A, Wei X, et al. 2020. Policy development for sustainable soil water use on China's loess plateau[J]. Science Bulletin, 65(24): 2053−2056. doi: 10.1016/j.scib.2020.09.006

    CrossRef Google Scholar

    [36] Jin Q, Zhang J, Shi M, et al. 2016. Estimating loess plateau average annual precipitation with multiple linear regression kriging and geographically weighted regression kriging[J]. Water, 8(6): 266. doi: 10.3390/w8060266

    CrossRef Google Scholar

    [37] Li B, Wang Y, Hill R L, et al. 2019. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS−1D model[J]. Agriculture, Ecosystems & Environment, 285: 106645.

    Google Scholar

    [38] Li H, Han S, Wu X, et al. 2021. Distribution, characteristics and influencing factors of fresh groundwater resources in the loess plateau, China[J]. China Geology, 4(3): 509−526.

    Google Scholar

    [39] Li H, Liu W, Zhan H, et al. 2022. Effect of barometric pumping on relative humidity in the loessal soil of the loess plateau[J]. Geoderma, 424: 116008.

    Google Scholar

    [40] Li H, Si B, Li M. 2018. Rooting depth controls potential groundwater recharge on hillslopes[J]. Journal of Hydrology, 564: 164−174. doi: 10.1016/j.jhydrol.2018.07.002

    CrossRef Google Scholar

    [41] Li W, Wang Q J, Wei S P, et al. 2008. Soil desiccation for loess soils on natural and regrown areas[J]. Forest Ecology and Management, 255(7): 2467−2477. doi: 10.1016/j.foreco.2008.01.006

    CrossRef Google Scholar

    [42] Liang X, Lettenmaier D P, Wood E F, et al. 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research, 99(D7): 14415. doi: 10.1029/94JD00483

    CrossRef Google Scholar

    [43] Liao K H, Lu L G. 2018. Advances in research of hillslope soil hydrological processes in the humid region of Southeast China[J]. Progress in Geography, 37(4): 476−484(in Chinese with English abstract). doi: 10.18306/dlkxjz.2018.04.003

    CrossRef Google Scholar

    [44] Lin H. 2010. Earth's critical zone and hydropedology, concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences, 14(1): 25−45. doi: 10.5194/hess-14-25-2010

    CrossRef Google Scholar

    [45] Lin H, Drohan P, Green T R. 2015. Hydropedology: the last decade and the next decade[J]. Soil Science Society of America Journal, 79(2): 357−361. doi: 10.2136/sssaj2015.02.0069

    CrossRef Google Scholar

    [46] Liu G B, Shang G Z P, Yao W Y, et al. 2017. Ecological effects of soil conservation in loess plateau[J]. Bulletin of Chinese Academy of Sciences, (1): 11−19(in Chinese with English abstract).

    Google Scholar

    [47] Liu J, Rühland K M, Chen J, et al. 2017. Aerosol−weakened summer monsoons decrease lake fertilization on the Chinese loess plateau[J]. Nature Climate Change, 7(3): 190−194. doi: 10.1038/nclimate3220

    CrossRef Google Scholar

    [48] Li Z S, Yang L, Wang G L, et al. 2019. The management of soil and water conservation in the loess plateau of China: Present situations, problems, and counter−solutions[J]. Acta Ecologica Sinica, 39(20): 7398−7409(in Chinese with English abstract).

    Google Scholar

    [49] Lu A G, Suo A N, Zhang L. 2011. Simulation of spatial pattern of soil water loss in a watershed of the loess plateau based SWAT model[J]. Research of Soil and Water Conservation, 18(2): 57−61(in Chinese with English abstract).

    Google Scholar

    [50] Luo Z B, Fan J, Shao M A. 2022. Progresses of weathered bedrock ecohydrology in the Earth's critical zone[J]. Chinese Science Bulletin, 67(27): 3311−3323(in Chinese with English abstract). doi: 10.1360/TB-2022-0046

    CrossRef Google Scholar

    [51] Lü Y, Hu J, Fu B, et al. 2019. A framework for the regional critical zone classification: the case of the chinese loess plateau[J]. National Science Review, 6(1): 14−18. doi: 10.1093/nsr/nwy147

    CrossRef Google Scholar

    [52] Ma Y, Li X, Guo L, et al. 2017. Hydropedology: interactions between pedologic and hydrologic processes across spatiotemporal scales[J]. Earth−Science Reviews, 171: 181−195. doi: 10.1016/j.earscirev.2017.05.014

    CrossRef Google Scholar

    [53] Mccoll K A, Alemohammad S H, Akbar R, et al. 2017. The global distribution and dynamics of surface soil moisture[J]. Nature Geoscience, 10(2): 100. doi: 10.1038/ngeo2868

    CrossRef Google Scholar

    [54] Mcmillan H, Gueguen M, Grimon E, et al. 2014. Spatial variability of hydrological processes and model structure diagnostics in a 50 km2 catchment[J]. Hydrological Processes, 28(18): 4896−4913. doi: 10.1002/hyp.9988

    CrossRef Google Scholar

    [55] Mello C R D, Norton L D, Pinto L C, et al. 2016. Agricultural watershed modeling: a review for hydrology and soil erosion processes[J]. Ciência E Agrotecnologia, 40(1): 7−25.

    Google Scholar

    [56] Narayanan R M, Hirsave P P. 2001. Soil moisture estimation models using sir−c sar data: a case study in new hampshire, USA[J]. Remote Sensing of Environment, 75(3): 385−396. doi: 10.1016/S0034-4257(00)00181-4

    CrossRef Google Scholar

    [57] Noborio K. 2001. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review[J]. Computers and Electronics in Agriculture, 31(3): 213−237. doi: 10.1016/S0168-1699(00)00184-8

    CrossRef Google Scholar

    [58] Peng X H, Wang Y Q, Jia X X, et al. 2020. Some key research fields of Chinese soil physics in the new era: Progresses and perspectives[J]. Acta Pedologica Sinica, 57(5): 1071−1087(in Chinese with English abstract).

    Google Scholar

    [59] Qiao X T, Cao Y, Bi R T. 2019. Characteristics of soil water content of reclamation farmland in mining area of the loess plateau based on AEA method[J]. Chinese Journal of Soil Science, 50(1): 63−69(in Chinese with English abstract).

    Google Scholar

    [60] Quinlan J R. 1996. Improved use of continuous attributes in C4.5[J]. Journal of Artificial Intelligence Research, 4: 77−90. doi: 10.1613/jair.279

    CrossRef Google Scholar

    [61] Rao P, Wang Y, Liu Y, et al. 2022. A comparison of multiple methods for mapping groundwater levels in the MU US sandy land, China[J]. Journal of Hydrology: Regional Studies, 43: 101189. doi: 10.1016/j.ejrh.2022.101189

    CrossRef Google Scholar

    [62] Ren J, Wang X, Shen Z, et al. 2018. Heat tracer test in a riparian zone: laboratory experiments and numerical modelling[J]. Journal of Hydrology, 563: 560−575. doi: 10.1016/j.jhydrol.2018.06.030

    CrossRef Google Scholar

    [63] Richardson M, Kumar P. 2017. Critical zone services as environmental assessment criteria in intensively managed landscapes[J]. Earth's Future, 5(6): 617−632. doi: 10.1002/2016EF000517

    CrossRef Google Scholar

    [64] Richter D D, Mobley M L. 2009. Monitoring earth's critical zone[J]. Science, 326(5956): 1067−1068. doi: 10.1126/science.1179117

    CrossRef Google Scholar

    [65] Sayde C, Buelga J B, Rodriguez−Sinobas L, et al. 2014. Mapping variability of soil water content and flux across 1−1000 m scales using the actively heated fiber optic method[J]. Water Resources Research, 50(9): 7302−7317. doi: 10.1002/2013WR014983

    CrossRef Google Scholar

    [66] Sciences C O B R. 2001. Basic research opportunities in earth science[M]: National Academy Press.

    Google Scholar

    [67] Shao M, Wang Y, Xia Y, et al. 2018. Soil drought and water carrying capacity for vegetation in the critical zone of the loess plateau: A review[J]. Vadose Zone Journal, 17(1): 1−8.

    Google Scholar

    [68] Shao X M, Yan C R, Xu Z J. 2004. Progress in monitoring and simulation of soil moisture[J]. Progress in Geography, 23(3): 58−66(in Chinese with English abstract).

    Google Scholar

    [69] Shen H J, Yan C R, Dai Y P. 2003. Progress and application of soil moisture monitoring and forecasting models[J]. Ecologic Science, 22(4): 366−370,376(in Chinese with English abstract).

    Google Scholar

    [70] Sun A, Guo Z, Wu H, et al. 2017. Reconstruction of the vegetation distribution of different topographic units of the Chinese loess plateau during the Holocene[J]. Quaternary Science Reviews, 173: 236−247. doi: 10.1016/j.quascirev.2017.08.006

    CrossRef Google Scholar

    [71] Sun H, Wang Y, Zhao Y, et al. 2020. Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the critical zone of the Chinese loess plateau[J]. Journal of Hydrology, 589: 125132. doi: 10.1016/j.jhydrol.2020.125132

    CrossRef Google Scholar

    [72] Sun P P, Zhang M S, Jiang R J, et al. 2021. Deformation and failure mechanism of rainfall−induced shallow loess landside[J]. Geological Bulletin of China, 40(10): 1617−1625.

    Google Scholar

    [73] Sun Y S, Chou R R, Deng X. 2014. Research development of mapping knowledge domains in China——Analysis based on CiteSpace Ⅱ[J]. Journal of Modern Information, 34(1): 84−88(in Chinese with English abstract).

    Google Scholar

    [74] Tang Q, Xu Y, Bennett S J, et al. 2015. Assessment of soil erosion using rusle and gis: a case study of the yangou watershed in the loess plateau, China[J]. Environmental Earth Sciences, 73(4): 1715−1724. doi: 10.1007/s12665-014-3523-z

    CrossRef Google Scholar

    [75] Vose J M, Sun G, Ford C R, et al. 2011. Forest ecohydrological research in the 21st century: what are the critical needs?[J]. Ecohydrology, 4(2): 146−158. doi: 10.1002/eco.193

    CrossRef Google Scholar

    [76] Wang H, Zhao W W, Jia L Z. 2021. Progress and prospect of soil water erosion research over past decade based on the bibliometrics analysis[J]. Science of Soil and Water Conservation, 19(1): 141−151(in Chinese with English abstract).

    Google Scholar

    [77] Wang J, Zhao W, Jia L, et al. 2021. Soil desiccation trends after afforestation in the loess plateau of China[J]. Journal of Soils and Sediments, 21(2): 1165−1176. doi: 10.1007/s11368-020-02845-3

    CrossRef Google Scholar

    [78] Wang Q, Fan J, Wang S, et al. 2019. Application and accuracy of cosmic−ray neutron probes in three soil textures on the loess plateau, China[J]. Journal of Hydrology, 569: 449−461. doi: 10.1016/j.jhydrol.2018.11.073

    CrossRef Google Scholar

    [79] Wang X C, Li J, Tahir M N, et al. 2011. Validation of the epic model using a long−term experimental data on the semi−arid loess plateau of China[J]. Mathematical and Computer Modelling, 54(3/4): 976−986. doi: 10.1016/j.mcm.2010.11.025

    CrossRef Google Scholar

    [80] Wang X, Hu G, Saito Y, et al. 2022. Did the modern yellow river form at the mid−pleistocene transition ?[J]. Science Bulletin, 67(15): 1603−1610. doi: 10.1016/j.scib.2022.06.003

    CrossRef Google Scholar

    [81] Wang Y Q, Hu W, Sun H, et al. 2024. Soil moisture decline in China's monsoon loess critical zone: More a result of land−use conversion than climate change[J]. Proceedings of the National Academy of Sciences, 121(15): e2322127121.

    Google Scholar

    [82] Wang Y Q, Shao M A, Hu W, et al. 2016. Spatial variations of soil water content in the critical zone of the Chinese loess plateau[J]. Earth and Environment, 44(4): 391−397(in Chinese with English abstract).

    Google Scholar

    [83] Wang Y Q, Shao M A, Sun H, et al. 2020. Response of deep soil drought to precipitation, land use and topography across a semiarid watershed[J]. Agricultural and Forest Meteorology, 282: 107866.

    Google Scholar

    [84] Wang Y S, Xia S T. 2018. A survey of random forests algorithms[J]. Information and Communications Technologies, 12(1): 49−55(in Chinese with English abstract).

    Google Scholar

    [85] Wei Y T, Liu M H, Liu K, et al. 2021. Progress of multi−scale soil moisture monitoring[J]. Chinese Agricultural Science Bulletin, 37(26): 140−145(in Chinese with English abstract).

    Google Scholar

    [86] Williams J R, Jones C A, Dyke P T. 1984. A modeling approach to determining the relationship between erosion and soil productivity.[J]. Transactions of the Asae, 27(1): 129−144. doi: 10.13031/2013.32748

    CrossRef Google Scholar

    [87] Wu P T, Zhao X N, Zhang B Q, et al. 2017. Exploitation of rainwater harvesting potential and its impact on regional ecological restoration over the loess plateau[J]. Journal of Hydroelectric Engineering, 36(8): 1−11(in Chinese with English abstract).

    Google Scholar

    [88] Xiao B, Wang Q H, Zhao Y G, et al. 2011. Artificial culture of biological soil crusts and its effects on overland flow and infiltration under simulated rainfall[J]. Applied Soil Ecology, 48(1): 11−17. doi: 10.1016/j.apsoil.2011.02.006

    CrossRef Google Scholar

    [89] Yang Q, Luo W, Jiang Z, et al. 2016. Improve the prediction of soil bulk density by cokriging with predicted soil water content as auxiliary variable[J]. Journal of Soils and Sediments, 16(1): 77−84. doi: 10.1007/s11368-015-1193-4

    CrossRef Google Scholar

    [90] Ye L Y, Liu P, Huang J X, et al. 2020. Estimation of water consumption characteristics of typical ecosystems in the Daqing River Basin using WAVES model[J]. China Rural Water and Hydropower, (8): 35−39(in Chinese with English abstract).

    Google Scholar

    [91] Zhang C, Tang Y, Xu X, et al. 2011. Towards spatial geochemical modelling: use of geographically weighted regression for mapping soil organic carbon contents in Ireland[J]. Applied Geochemistry, 26(7): 1239−1248. doi: 10.1016/j.apgeochem.2011.04.014

    CrossRef Google Scholar

    [92] Zhang C, Wang Y, Jia X, et al. 2020. Variations in capacity and storage of plant−available water in deep profiles along a revegetation and precipitation gradient[J]. Journal of Hydrology, 581: 124401. doi: 10.1016/j.jhydrol.2019.124401

    CrossRef Google Scholar

    [93] Zhang G L, Shi Z, Zhu A X, et al. 2020. Progress and perspective of studies on soils in space and time[J]. Acta Pedologica Sinica, 57(5): 1060−1070(in Chinese with English abstract).

    Google Scholar

    [94] Zhang L, Dawes W R, Hatton T J. 1996. Modelling hydrologic processes using a biophysically based model−application of waves to fife and hapex−mobilhy[J]. Journal of Hydrology, 185(1/4): 147−169. doi: 10.1016/0022-1694(95)03006-9

    CrossRef Google Scholar

    [95] Zhang Y T, Xiao H B, Nie X D, et al. 2020. Evolution of research on soil Erosion at home and abroad in the past 30 years—Based on bibliometric analysis[J]. Acta Pedologica Sinica, 57(4): 797−810(in Chinese with English abstract).

    Google Scholar

    [96] Zhen Q, Zheng J, Zhang X, et al. 2019. Changes of solute transport characteristics in soil profile after mining at an opencast coal mine site on the loess plateau, China[J]. Science of the Total Environment, 665: 142−152. doi: 10.1016/j.scitotenv.2019.02.035

    CrossRef Google Scholar

    [97] Zhu A N, Ji L Q, Zhang J B, et al. 2009. Research progress on soil moisture measurement via ground−penetrating radar[J]. Chinese Journal of Eco−Agriculture, 17(5): 1039−1044(in Chinese with English abstract). doi: 10.3724/SP.J.1011.2009.01039

    CrossRef Google Scholar

    [98] Zhu A X, Band L, Vertessy R, et al. 1997. Derivation of soil properties using a soil land inference model (solim)[J]. Soil Science Society of America Journal, 61(2): 523−533. doi: 10.2136/sssaj1997.03615995006100020022x

    CrossRef Google Scholar

    [99] Zhu Q, Liao K H, Lai X M, et al. 2019. A review of soil water monitoring and modelling across spatial scales in the watershed[J]. Progress in Geography, 38(8): 1150−1158(in Chinese with English abstract). doi: 10.18306/dlkxjz.2019.08.004

    CrossRef Google Scholar

    [100] Zou C B, Turton D J, Will R E, et al. 2014. Alteration of hydrological processes and streamflow with Juniper (Juniperus Jirginiana) encroachment in a mesic grassland catchment[J]. Hydrological Processes, 28(26): 6173−6182. doi: 10.1002/hyp.10102

    CrossRef Google Scholar

    [101] Zou J L, Shao M, Gong S H. 2011. Effects of different vegetation and soil types on profile variability of soil moisture[J]. Research of Soil and Water Conservation, 18(6): 12−17(in Chinese with English abstract).

    Google Scholar

    [102] 常学尚, 常国乔. 2021. 干旱半干旱区土壤水分研究进展[J]. 中国沙漠, 41(1): 156−163.

    Google Scholar

    [103] 丁文斌, 王飞. 2022. 植被建设对黄土高原土壤水分的影响[J]. 生态学报, 42(13): 5531−5542.

    Google Scholar

    [104] 冯慧敏, 雷廷武, 张久文, 等. 2009. 美国水土保持法律法规简介[J]. 水土保持研究, 16(3): 276−280.

    Google Scholar

    [105] 贺缠生, 田杰, 张宝庆, 等. 2021. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 36(2): 113−124. doi: 10.11867/j.issn.1001-8166.2021.016

    CrossRef Google Scholar

    [106] 胡猛, 冯起, 席海洋. 2013. 遥感技术监测干旱区土壤水分研究进展[J]. 土壤通报, 44(5): 1270−1275.

    Google Scholar

    [107] 焦峰, 温仲明, 陈云明. 2005. 基于GIS的黄丘区土壤水分制图及其定量化分析[J]. 水土保持研究, 12(3): 129−131,177. doi: 10.3969/j.issn.1005-3409.2005.03.042

    CrossRef Google Scholar

    [108] 焦峰, 温仲明, 陈云明, 等. 2006. 基于gis的安塞县土壤水分制图及其数量分析[J]. 中国水土保持科学, 4(1): 75−80. doi: 10.3969/j.issn.1672-3007.2006.01.014

    CrossRef Google Scholar

    [109] 李宗善, 杨磊, 王国梁, 等. 2019. 黄土高原水土流失治理现状、问题及对策[J]. 生态学报, 39(20): 7398−7409.

    Google Scholar

    [110] 廖凯华, 吕立刚. 2018. 东南湿润区坡面土壤水文过程研究进展与展望[J]. 地理科学进展, 37(4): 476−484.

    Google Scholar

    [111] 刘国彬, 上官周平, 姚文艺, 等. 2017. 黄土高原生态工程的生态成效[J]. 中国科学院院刊, (1): 11−19.

    Google Scholar

    [112] 卢爱刚, 索安宁, 张镭. 2011. 基于SWAT模型的黄土高原典型区水土流失格局模拟评价[J]. 水土保持研究, 18(2): 57−61.

    Google Scholar

    [113] 骆占斌, 樊军, 邵明安. 2022. 地球关键带基岩风化层生态水文研究进展[J]. 科学通报, 67(27): 3311−3323.

    Google Scholar

    [114] 彭新华, 王云强, 贾小旭, 等. 2020. 新时代中国土壤物理学主要领域进展与展望[J]. 土壤学报, 57(5): 1071−1087. doi: 10.11766/trxb202002280077

    CrossRef Google Scholar

    [115] 乔新涛, 曹毅, 毕如田. 2019. 基于AEA法的黄土高原矿区复垦农田土壤含水率特征研究[J]. 土壤通报, 50(1): 63−69.

    Google Scholar

    [116] 邵晓梅, 严昌荣, 徐振剑. 2004. 土壤水分监测与模拟研究进展[J]. 地理科学进展, 23(3): 58−66. doi: 10.3969/j.issn.1007-6301.2004.03.008

    CrossRef Google Scholar

    [117] 申慧娟, 严昌荣, 戴亚平. 2003. 农田土壤水分预测模型的研究进展及应用[J]. 生态科学, 22(4): 366−370,376. doi: 10.3969/j.issn.1008-8873.2003.04.017

    CrossRef Google Scholar

    [118] 孙萍萍, 张茂省, 江睿君, 等. 2021. 降雨诱发浅层黄土滑坡变形破坏机制[J]. 地质通报, 40(10): 1617−1625. doi: 10.12097/j.issn.1671-2552.2021.10.003

    CrossRef Google Scholar

    [119] 孙雨生, 仇蓉蓉, 邓兴. 2014. 国内知识图谱研究进展——基于citespace ⅱ的分析[J]. 现代情报, 34(1): 84−88. doi: 10.3969/j.issn.1008-0821.2014.01.019

    CrossRef Google Scholar

    [120] 王涵, 赵文武, 贾立志. 2021. 近10年土壤水蚀研究进展与展望: 基于文献计量的统计分析[J]. 中国水土保持科学(中英文), 19(1): 141−151.

    Google Scholar

    [121] 王奕森, 夏树涛. 2018. 集成学习之随机森林算法综述[J]. 信息通信技术, 12(1): 49−55. doi: 10.3969/j.issn.1674-1285.2018.01.009

    CrossRef Google Scholar

    [122] 王云强, 邵明安, 胡伟, 等. 2016. 黄土高原关键带土壤水分空间分异特征[J]. 地球与环境, 44(4): 391−397.

    Google Scholar

    [123] 魏玉涛, 刘明欢, 刘可, 等. 2021. 多尺度土壤水监测研究进展[J]. 中国农学通报, 37(26): 140−145. doi: 10.11924/j.issn.1000-6850.casb2021-0145

    CrossRef Google Scholar

    [124] 吴普特, 赵西宁, 张宝庆, 等. 2017. 黄土高原雨水资源化潜力及其对生态恢复的支撑作用[J]. 水力发电学报, 36(8): 1−11. doi: 10.11660/slfdxb.20170801

    CrossRef Google Scholar

    [125] 叶林媛, 刘攀, 黄俊雄, 等. 2020. 基于WAVES模型的大清河流域典型生态系统耗水特征分析[J]. 中国农村水利水电, (8): 35−39. doi: 10.3969/j.issn.1007-2284.2020.08.007

    CrossRef Google Scholar

    [126] 张甘霖, 史舟, 朱阿兴, 等. 2020. 土壤时空变化研究的进展与未来[J]. 土壤学报, 57(5): 1060−1070. doi: 10.11766/trxb202004270199

    CrossRef Google Scholar

    [127] 张宇婷, 肖海兵, 聂小东, 等. 2020. 基于文献计量分析的近30年国内外土壤侵蚀研究进展[J]. 土壤学报, 57(4): 797−810. doi: 10.11766/trxb201906030237

    CrossRef Google Scholar

    [128] 朱安宁, 吉丽青, 张佳宝, 等. 2009. 基于探地雷达的土壤水分测定方法研究进展[J]. 中国生态农业学报, 17(5): 1039−1044.

    Google Scholar

    [129] 朱青, 廖凯华, 赖晓明, 等. 2019. 流域多尺度土壤水分监测与模拟研究进展[J]. 地理科学进展, 38(8): 1150−1158. doi: 10.18306/dlkxjz.2019.08.004

    CrossRef Google Scholar

    [130] 邹俊亮, 邵明安, 龚时慧. 2011. 不同植被和土壤类型下土壤水分剖面的分异[J]. 水土保持研究, 18(6): 12−17.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1952) PDF downloads(274) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint