2024 Vol. 43, No. 8
Article Contents

LI Xiao, WU Kening, LIU Ya’nan, QIAN Jiacheng. 2024. Classification framework and empirical study of Earth Critical Zone at small-scale: A case study of Xixia County, Henan Province. Geological Bulletin of China, 43(8): 1336-1345. doi: 10.12097/gbc.2022.12.011
Citation: LI Xiao, WU Kening, LIU Ya’nan, QIAN Jiacheng. 2024. Classification framework and empirical study of Earth Critical Zone at small-scale: A case study of Xixia County, Henan Province. Geological Bulletin of China, 43(8): 1336-1345. doi: 10.12097/gbc.2022.12.011

Classification framework and empirical study of Earth Critical Zone at small-scale: A case study of Xixia County, Henan Province

More Information
  • The classification of Earth Critical Zone is helpful to cognize the spatial distribution and understand the regional differences in the occurrence and evolution of Critical Zone. Besides, it is the basis for the observation and investigation of Critical Zone. To further study the existing large−scale Critical Zone classification, this study constructed a set of small−scale Critical Zone classification frameworks using a multi−level classification method. It made an empirical study of Xixia County in Henan Province by using the map overlay method in GIS. The research results showed a group of multi−level classification frameworks covering classification principles and indexes in the mountainous area, and the Critical Zone of Xixia County was divided into 28 first−level types, 246 second−level types, and 722 third−level types. This classification can improve the overall understanding of earth system science. It also has specific reference significance for scientific research and the comprehensive management of natural resources in the critical zones of the earth at different scales.

  • 加载中
  • [1] An Z S, Fu C B. 2001. The progess in global change science[J]. Advance in Earth Sciences, (5): 671−680(in Chinese with English abstract).

    Google Scholar

    [2] Banwart S A, Chorover J, Gaillardet J, et al. 2013. Sustaining Earth’s critical zone basic science and interdisciplinary solutions for global challenges[M]. Sheffield: University of Sheffield.

    Google Scholar

    [3] Banwart S, Bernasconi S M, Bloem J, et al. 2011. Soil processes and functions in critical zone observatories: Hypotheses and experimental design[J]. Vadose Zone Journal, 10(3): 974−987. doi: 10.2136/vzj2010.0136

    CrossRef Google Scholar

    [4] Brantley S L, Goldhaber M B, Ragnarsdottir K V. 2007. Crossing disciplines and scales to understand the critical zone[J]. Elements, 3(5): 307−314. doi: 10.2113/gselements.3.5.307

    CrossRef Google Scholar

    [5] Brantley S L, White T S, White A F. 2005. Frontiers in exploration of the critical zone: Report of a workshop sponsored by the NSF Newark [R].

    Google Scholar

    [6] Cao J H, Yang H, Zhang C L, et al. 2018. Characteristics of structure and material cycling of the karst critical zone in Southwest China[J]. Geological Survey of China, 5(5): 1−12(in Chinese with English abstract).

    Google Scholar

    [7] Giardino J R, Houser C. 2015. Principles and dynamics of the critical zone [M]. Elsevier.

    Google Scholar

    [8] Guo Z J. 2012. A review on the Paleozoic tectonic evolution of northern Xinjiang and a discussion on the important role of geological maps in tectonic study[J]. Geological Bulletin of China, 31(7): 1054−1060(in Chinese with English abstract).

    Google Scholar

    [9] Hjort J, Gordon J E, Gray M, et al. 2015. Why geodiversity matters in valuing nature's stage[J]. Conservation Biology, 29(3): 630−639. doi: 10.1111/cobi.12510

    CrossRef Google Scholar

    [10] Hu J, Hu J J, Lü Y H. 2021, Spatial variation of the relationship between annual runoff and sediment yield and land uses based on the regional critical zone differentiation in the Loss Plateau [J]. Acta Ecologica Sinica, 41(16) : 6417−6429(in Chinese with English abstract).

    Google Scholar

    [11] Keith D A. 2011. Relationships between geodiversity and vegetation in southeastern Australia[C]//Proceedings of the Linnean Society of New South Wales: 5−26.

    Google Scholar

    [12] Li L, Maher K, Navarre−Sitchler A, et al. 2017. Expanding the role of reactive transport models in critical zone processes[J]. Earth−Science Reviews, 165: 280−301. doi: 10.1016/j.earscirev.2016.09.001

    CrossRef Google Scholar

    [13] Li X L, Wu K N, Feng Z, et al. 2022. Research progress of land surface system classification: From land type to Earth's critical zone type[J]. Progress in Geography, 41(3): 531−542 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2022.03.015

    CrossRef Google Scholar

    [14] Liu L M. 2002. Land resource management[M]. Beijing: China Agricultural University Press (in Chinese).

    Google Scholar

    [15] Liu Y N, Wu K N, Li X L, et al. 2022. Classification of land types at provincial level based on the goal of black land protection: A case study of Heilongjiang Province[J]. Scientia Geographica Sinica, 42(8): 1348−1359 (in Chinese with English abstract).

    Google Scholar

    [16] Liu Y S. 2020. Modern human−earth relationship and human−earth system science[J]. Scientia Geographica Sinica. 40(8): 1221−1234 (in Chinese with English abstract).

    Google Scholar

    [17] Luo Z B, Fan J, Shao M A. 2022. Progresses of weathered bedrock ecohydrology in the Earth’s critical zone[J]. Chinese Science Bulletin, 67: 3311−3323 (in Chinese with English abstract). doi: 10.1360/TB-2022-0046

    CrossRef Google Scholar

    [18] Lü Y H, Hu J, Fu B J, et al. 2019. A framework for the regional critical zone classification: The case of the Chinese Loess Plateau[J]. National Science Review, 6(1): 14−18. doi: 10.1093/nsr/nwy147

    CrossRef Google Scholar

    [19] Ma W J, Min L L, Qi Y Q, et al. 2022. Classification of agricultural critical zones in the North China Plain[J]. Chinese Journal of Eco−Agriculture, 30(5): 769−778 (in Chinese with English abstract).

    Google Scholar

    [20] National Research Council. 2001. Basic research opportunities in Earth science[M]. Washington DC: National Academy Press.

    Google Scholar

    [21] Pu J B. 2022. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 41(5): 230−241 (in Chinese with English abstract).

    Google Scholar

    [22] Rasmussen C, Troch P A, Chorover J, et al. 2011. An open system framework for integrating critical zone structure and function[J]. Biogeochemistry, 102(1): 15−29.

    Google Scholar

    [23] Richter D B, Billings S A. 2015. ‘One physical system’: Tansley's ecosystem as Earth's critical zone[J]. New Phytologist, 206(3): 900−912. doi: 10.1111/nph.13338

    CrossRef Google Scholar

    [24] Salve R, Rempe D M, Dietrich W E. 2012. Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope[J]. Water Resources Research, 48(11): 1−25.

    Google Scholar

    [25] Scarpone C, Schmidt M G, Bulmer C E, et al. 2016. Modelling soil thickness in the critical zone for Southern British Columbia[J]. Geoderma, 282: 59−69. doi: 10.1016/j.geoderma.2016.07.012

    CrossRef Google Scholar

    [26] Sullivan P L, Wymore A S, McDowell M. 2017. New Opportunities for Critical Zone Science[R]. Arlington, VA: 2017 CZO Arlington Meeting White Booklet.

    Google Scholar

    [27] Shi J P, Song G., 2016. Soil type database of China: A nationwide soil dataset based on the Second National Soil Survey[J]. China Scientific Data, (2): 1−12(in Chinese with English abstract).

    Google Scholar

    [28] Wang J G, Yang L Z, Shan Y H, 2001. Application of fuzzy mathematics to soil quality evaluation[J]. Acta Pedologica Sinica, (2): 176−183(in Chinese with English abstract).

    Google Scholar

    [29] Yang J F, Zhang C G. 2014. Earth’s critical zone: A holistic framework for geo−environmental researches[J]. Hydrogeology & Engineering Geology, 41(3): 98−104,110(in Chinese with English abstract).

    Google Scholar

    [30] Yang S H, Zhang G L. 2021. What are Earth's key zones[J]. Science, 73(5): 33−36,4 (in Chinese).

    Google Scholar

    [31] Zhang G L, Zhu Y G, Shao M A. 2019. Understanding sustainability of soil and water resources in a critical zone perspective[J]. Science China Earth Sciences, 62: 1716−1718 (in Chinese with English abstract). doi: 10.1007/s11430-019-9368-7

    CrossRef Google Scholar

    [32] Zhang G L, Song X D, Wu K N. 2021. A classification scheme for Earth’s critical zones and its application in China[J]. Science China Earth Sciences, 64(10): 1709−1720 (in Chinese with English abstract). doi: 10.1007/s11430-020-9798-2

    CrossRef Google Scholar

    [33] Zheng J Y, Yin Y H, Li B Y. 2010. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 65(1): 3−12 (in Chinese with English abstract).

    Google Scholar

    [34] Zheng J Y, Bian J J, Ge Q S, et al. 2013. The climate regionalization in China for 1951−1980 and 1981−2010[J], Geographical Research, 32(6): 987−997 (in Chinese with English abstract).

    Google Scholar

    [35] Zhu Y G, Li G, Zhang G L, et al. 2015. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 70(12): 1859−1869 (in Chinese with English abstract).

    Google Scholar

    [36] 安芷生, 符淙斌. 2001. 全球变化科学的进展[J]. 地球科学进展, (5): 671−680. doi: 10.3321/j.issn:1001-8166.2001.05.011

    CrossRef Google Scholar

    [37] 曹建华, 杨慧, 张春来, 等. 2018. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 5(5): 1−12.

    Google Scholar

    [38] 郭召杰. 2012. 新疆北部大地构造研究中几个问题的评述——兼论地质图在区域构造研究中的重要意义[J]. 地质通报, 31(7): 1054−1060. doi: 10.3969/j.issn.1671-2552.2012.07.004

    CrossRef Google Scholar

    [39] 胡健, 胡金娇, 吕一河. 2021. 基于黄土高原关键带类型的土地利用与年径流产沙关系空间分异研究[J]. 生态学报, 41(16): 6417−6429.

    Google Scholar

    [40] 李晓亮, 吴克宁, 冯喆, 等. 2022. 陆地表层系统分类研究进展——从土地类型到地球关键带类型[J]. 地理科学进展, 41(3): 531−542. doi: 10.18306/dlkxjz.2022.03.015

    CrossRef Google Scholar

    [41] 刘黎明. 2002. 土地资源学[M]. 北京: 中国农业大学出版社.

    Google Scholar

    [42] 刘亚男, 吴克宁, 李晓亮, 等. 2022. 基于黑土地保护目标的省级尺度土地类型划分研究——以黑龙江省为例[J]. 地理科学, (8): 1348−1359.

    Google Scholar

    [43] 刘彦随. 2020. 现代人地关系与人地系统科学[J]. 地理科学, 40(8): 1221−1234.

    Google Scholar

    [44] 骆占斌, 樊军, 邵明安. 2022. 地球关键带基岩风化层生态水文研究进展[J]. 科学通报, 67(27): 3311−3323.

    Google Scholar

    [45] 马婉君, 闵雷雷, 齐永青, 等. 2022. 华北平原农田关键带分类研究[J]. 中国生态农业学报(中英文), 30(5): 769−778. doi: 10.12357/cjea.20220042

    CrossRef Google Scholar

    [46] 蒲俊兵. 2022. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 41(5): 230−241.

    Google Scholar

    [47] 施建平, 宋歌. 2016. 中国土种数据库——基于第二次土壤普查的全国性土壤数据集[J]. 中国科学数据, (2): 1−12.

    Google Scholar

    [48] 王建国, 杨林章, 单艳红. 2001. 模糊数学在土壤质量评价中的应用研究[J]. 土壤学报, (2): 176−183. doi: 10.3321/j.issn:0564-3929.2001.02.005

    CrossRef Google Scholar

    [49] 杨建锋, 张翠光. 2014. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 41(3): 98−104,110.

    Google Scholar

    [50] 杨顺华, 张甘霖. 2021. 什么是地球关键带[J]. 科学, 73(5): 33−36,4.

    Google Scholar

    [51] 张甘霖, 朱永官, 邵明安. 2019. 地球关键带过程与水土资源可持续利用的机理[J]. 中国科学: 地球科学, 49(12): 1945−1947.

    Google Scholar

    [52] 张甘霖, 宋效东, 吴克宁. 2021. 地球关键带分类方法与中国案例研 究[J]. 中国科学: 地球科学, 51(10): 1681−1692.

    Google Scholar

    [53] 郑景云, 尹云鹤, 李炳元. 2010. 中国气候区划新方案[J]. 地理学报, 65(1): 3−12. doi: 10.11821/xb201001002

    CrossRef Google Scholar

    [54] 郑景云, 卞娟娟, 葛全胜, 等. 2013. 中国1951—1980年及1981— 2010年的气候区划[J]. 地理研究, 32(6): 987−997.

    Google Scholar

    [55] 朱永官, 李刚, 张甘霖, 等. 2015. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 70(12): 1859−1869. doi: 10.11821/dlxb201512001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(731) PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint