| Citation: | ZHENG Ying, LI Wufu, ZHANG Xiaoyong, HAN Jie, JIN Xuliang, GOU Mingliang. 2024. Age and protolith characteristics of metamorphic surrounding rock of Chakabeishan pegmatitic lithium-beryllium ore in the northern margin of Qaidam. Geological Bulletin of China, 43(7): 1104-1119. doi: 10.12097/gbc.2023.02.009 | 
The Chakabeishan lithium beryllium deposit is located in the west of Nanshan, Qinghai Province. The region is tectonically located in the eastern segment of the Zongwulong Mountain continental margin rift belt. The orebody occurs in the granite pegmatite dike, and the surrounding rock is metamorphic rock assemblage of low amphibole-high green schist facies. The study value of this set of metamorphic rocks as the surrounding rock of lithium beryllium ore body is of great significance for discussing the regularity and prediction of lithium beryllium mineralization in the northern margin of Qaidam. Based on the rock assemblages, the schist formation was identified as the Chakabeishan Schist Formation. Based on zircon cathodoluminescence image characteristics and zircon U−Pb (LA−ICP−MS) dating tests, the formation age was determined to be Nanhuaian—Ordovician. Zircon Hf isotope analysis shows that the εHf(t) values range from −19.62 to −3.07, indicating that the rocks in the source area were partially melted from paleoproterozoic to Neoarchean upper crust. The contents of SiO2, FeO, TFe2O3, and MgO in schist Formation are 61.33% ~ 70.57%, 3.58% ~ 5.13%, 5.2% ~ 7.95% and 1.89% ~ 4.95% respectively. The REE partition curve of chondrites is right-leaning, and the REE curve tends to be flat, with weak europium deficit and light REE enrichment characteristics. High field strength elements such as Th, U, Nd, Zr, Hf, Nb and Ti are enriched in trace elements, while lithophilic elements such as Ba and Sr are depleted. Based on the chronology and geochemistry, the author believes that the Chakabeishan schist was formed in the Neoproterozoic and Early Paleozoic back-arc basin environment. The protolith suffered from weak weathering and denudation, and the chemical composition is stable. It is determined to be argillaceous sandstone, whose material is mainly derived from felsic igneous rocks in the island arc environment. The tectonic setting is a continental island arc, which is consistent with the source area of pegmatite dikes containing lithium beryllium ore.
 
		                | [1] | Belousova E, Griffin V, Oreilly Y, et al. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602−622. | 
| [2] | Bhatia. 1981. Trace−Element Geochemistry and Sedimentary Provinces: A Study from the Tasman Geosyncline, Australia. Chemical [J] . Geology, 33(1/4), 115−125. | 
| [3] | Bhatia M R, Crook K. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 92(2) : 181−193. | 
| [4] | McLennan S M, Hemming S R, McDaniel D K, et al. 1993. Geochemical approaches to sedimentation, provenance and tectonics[J]. Geological Society of America Special Paper, 284: 21−40. | 
| [5] | McLennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continentalcrust[J]. Geochemistry Geophysics Geosystems, 2(4): 1021−1024. | 
| [6] | Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone−mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology, 94: 635−650. | 
| [7] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins.Geological Society, London, Special Publications, 42(1): 313−345. | 
| [8] | Zimmerman U, Bahlburg H. 2003. Provenance analysisand tectonic setting of the Ordovician clastic deposits inthe southern Puna Basin[J]. NW Argentina. Sedimentology, 50: 1079−1104. | 
| [9] | 冯连君, 储雪蕾, 张启锐, 等. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 10(4): 539−544. | 
| [10] | 郭安林, 张国伟, 强娟, 等. 2009. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 25(1) : 1−12. | 
| [11] | 郭现轻, 闫瑧, 付长垒, 等. 2016. 青海南山“金水口岩群”的时代与构造属性研究[J]. 地质学报, 90(3): 589−606. | 
| [12] | 郝国杰, 陆松年, 王惠初, 等. 2004. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J]. 地学前缘, 11(3): 115−122. | 
| [13] | 赖绍聪, 邓晋福. 1996. 柴达木北缘奥陶纪火山作用与构造机制[J]. 地球科学与环境学报, 3: 8−14. | 
| [14] | 李怀坤, 陆松年, 王惠初, 等. 2003. 青海柴北缘新元古代超大陆裂解的地质记录: 全吉群[J]. 地质调查与研究, 26(1): 27−37. | 
| [15] | 李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 15−32. | 
| [16] | 李五福, 潘彤, 王秉璋, 等. 2022. 青海南山奥陶纪岩浆弧: 来自茶卡北山闪长岩锆石U−Pb年代学、元素地球化学和Hf同位素的证据[J]. 大地构造与成矿学, 46(4): 788−802. | 
| [17] | 陆松年, 王惠初, 李怀坤, 等. 2002. 柴达木盆地北缘“达肯大坂群”的再厘定[J]. 地质通报, 21(1): 19−23. | 
| [18] | 孟繁聪, 张建新, 杨经绥. 2005. 俯冲的大陆岛弧−柴北缘片麻岩的地球化学和同位素证据[J]. 地质学报, 79(1): 46−55. | 
| [19] | 潘桂棠, 丁俊, 王立全, 等. 2013. 青藏高原及邻区大地构造图及说明书[M]. 北京: 地质出版社: 1−133. | 
| [20] | 彭渊, 张永生, 孙娇鹏, 等. 2017. 柴北缘北部中吾农山构造带及邻区中吾农山群物源和构造环境: 来自地球化学与锆石年代学的证据[J]. 大地构造与成矿学, 162(42): 126−149. | 
| [21] | 邱家骧, 杨巍然, 夏卫华. 1998. 南祁连早古生代海相火山岩及铜、多金属矿床成矿条件及找矿方向. [M]. 北京: 地质出版社: 111−163. | 
| [22] | 史仁灯, 杨经绥, 吴才来. 2003. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 22(3): 229−236. | 
| [23] | 孙健, 杨张张, 赵振英, 等. 2018. 青海石底泉地区宗务隆构造带花岗闪长岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 27(4): 604−612. | 
| [24] | 孙延贵. 2004. 西秦岭−东昆仑造山带的衔接转换与共和坳拉谷[D]. 西北大学博士学位论文: 1−195. | 
| [25] | 汤良杰, 金之钧, 张明利, 等. 2000. 柴达木盆地构造古地理分析[J]. 地学前缘, 7(4) : 421−429. | 
| [26] | 滕浪, 陈建立, 陈守余. 2009. 北秦岭老湾金矿带变质岩原岩恢复及其形成过程[J]. 地质找矿论丛, 34(3): 406−415. | 
| [27] | 王秉璋, 韩杰, 谢祥镭, 等. 2019. 青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li−Be成矿意义[J]. 大地构造与成矿学, 44(1): 69‒79. | 
| [28] | 王秉璋, 潘彤, 王强, 等. 2023. 青藏高原东北缘茶卡北山地区印支期高分异花岗岩的发现及找矿意义[J]. 岩石学报, 39(8): 2402‒2428. | 
| [29] | 王超, 李猛, 李荣社, 等. 2015. 青海柴达木盆地北缘全吉群内部存在区域性不整合[J]. 地质通报, 34(2/3): 364−373. | 
| [30] | 王惠初, 陆松年, 莫宣学, 等. 2005. 柴达木盆地北缘早古生代碰撞造山系统[J]. 地质通报, 24(7): 603−612. | 
| [31] | 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(02): 0185−20. | 
| [32] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对 U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. | 
| [33] | 辛后田, 王惠初, 周世军. 2006. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究, 29(4) : 311−320. | 
| [34] | 余吉远, 李向民, 马中平, 等. 2012. 南祁连化隆岩群LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 西北地质, 45(1): 79−85. | 
| [35] | 袁桂邦, 王惠初, 李惠民, 等. 2002. 柴北缘绿梁山地区辉长岩的锆石U−Pb年龄及意义[J]. 地质调查与研究, 25(1): 36−40. | 
| [36] | 袁亚娟, 夏斌, 吕宝凤, 等. 2012. 柴北缘东段石炭纪沉积特征及原型盆地恢复[J]. 沉积与特提斯地质, 32(1): 12−17. | 
| [37] | 张海军, 王训练, 王勋, 等. 2016. 柴达木盆地北缘全吉群红藻山组凝灰岩锆石U−Pb年龄及其地质意义[J]. 地学前缘, 23(6): 202−218. | 
| [38] | 张雪亭, 杨生德, 杨站君, 等. 2007. 青海省板块构造研究1: 100 万青海省大地构造图说明书[M]. 北京: 地质出版社, 1−221. | 
 
			            
			            
			            
			        Tectonic map of northern Qaidam margin and geological map of Chakabeishan area and adjacent areas
Geological map of Chakabeishan area on the northern margin of Qaidam, Qinghai Province
Macro outcrop and microstructure of schist in Chakabeishan area
CL images and U−Pb ages of detrital zircon from the schist sample in the Chakabeishan area
U−Pb zircon age diagram of the schist sample in Chakabeishan area
Diagrams of weathering characteristics of metamorphic rocks in Chakabeishan area
Rare earth element partition diagram (a) and trace elements spider diagram (b)
t-εHf (t) diagram of zircon from metamorphic rocks in Chakabeishan area
Discriminant diagram of metamorphic protolite in Chakabeishan area
Material composition diagrams of metamorphic rock source area in Chakabeishan area
Tectonic environment discrimination diagrams of metamorphic protoliths in Chakabeishan area