2024 Vol. 43, No. 7
Article Contents

WU Wenhui, ZHAN Hanyu, QIN Yulong, ZHANG Tong, XIONG Changli, XU Yunfeng. 2024. LA−ICP−MS trace element analysis of pyrite from Jiaodingshan cobalt deposits in Sichuan,and its constraints on the ore genesis. Geological Bulletin of China, 43(7): 1090-1103. doi: 10.12097/gbc.2022.12.021
Citation: WU Wenhui, ZHAN Hanyu, QIN Yulong, ZHANG Tong, XIONG Changli, XU Yunfeng. 2024. LA−ICP−MS trace element analysis of pyrite from Jiaodingshan cobalt deposits in Sichuan,and its constraints on the ore genesis. Geological Bulletin of China, 43(7): 1090-1103. doi: 10.12097/gbc.2022.12.021

LA−ICP−MS trace element analysis of pyrite from Jiaodingshan cobalt deposits in Sichuan,and its constraints on the ore genesis

More Information
  • The Jiaodingshan cobalt deposit is situated in the southwestern of Sichuan basin, and the source of the ore materials and fluids is still under debated. Cobalt is enriched in vulcanized species because of its double properties of iron and sulfur affinity. In order to analyse the genesis of the deposit, this study investigates the pyrite microstructure and the geochemical compositions of pyrite based on LA−ICP−MS. The results show that three generations of pyrite were identified according to its microstructure characteristics in Jiaodingshan cobalt deposit. The first generation (pyrite Ⅰ)is identified as original sedimentary pyrite, including colloform pyrite, subhedral pyrite and framboidal pyrite. The pyrite Ⅰ is characterized by low Co/ Ni ratio (<1 and the average ratio is 0.53) and low Co content (99.8 × 10−6). Due to the influence of tectonic deformation and hydrothermal superimposition, the pyrite Ⅱ often presents the structure with metasomatic relict texture(pyrite Ⅱ−a) and recrystallization(pyrite Ⅱ−b), which is characterized by high Co/ Ni ratios (Co/ Ni >1, the average ratios is 1.31) and middle Co content (1060.8 × 10−6). Pyrite Ⅲ exists in the form of fine sand−like and fine colloidal aggregates, along with strong metal luster. Such pyrite is often associated with linnaeite, siegenite and chalcopyrite, with the ratios of Co/ Ni higher than 1(the average ratios is 2.05) and the Co content being 10453.5×10−6. The Co and Ni contents in Py Ⅲ perhaps represented by siegenite inclusions enclosed in pyrite. Overall, the early sedimentary pyrite I with high ore−forming element background value may be affected by tectonic deformation−hydrothermal superposition transformation in the later period, resulting in further enrichment of ore−forming elements (Co) in pyrite Ⅱ. While the main ore−forming period of Py Ⅲ was hydrothermal superimposed on Py Ⅱ, and finally formed the existing cobalt deposit.

  • 加载中
  • [1] Brill B A. 1989. Trance element contents and partitioning of elements inore minerals from the CSA Cu−Pb−Zn deposit , Aust ralia[J]. Can. Mineral., 27: 263−274.

    Google Scholar

    [2] Belousov I, Large R R, Meffre S, et al. 2016. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration[J]. Ore Geology Reviews, 79: 474−499. doi: 10.1016/j.oregeorev.2016.04.020

    CrossRef Google Scholar

    [3] Bajwah Z U , Seccombe P K, Offler R. 1987. Trace element distribution, Co/Ni ratios and genesis of the Big Cadia iron copper deposit, New South wales, Australia[J]. Mineralium Deposita, 22: 292−303.

    Google Scholar

    [4] Craig J R, Vokes F M, Solberg T N. 1998. Pyrite: Physical and chemical textures. Mineralium Deposita, 34(1): 82–101.

    Google Scholar

    [5] Cook N J, Ciobanu C L, Mao J W. 2009. Textural control on gold distribution in As−free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China raton (Hebei Province, China)[J]. Chemical Geology, 264(1/2/3/4): 101−121.

    Google Scholar

    [6] Hawley J E, Niehol L. 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores[J]. Economic Geology, 56: 467−487. doi: 10.2113/gsecongeo.56.3.467

    CrossRef Google Scholar

    [7] Keith M, Häckel F, Haase K M, et al. 2016. Trace element systematics of pyrite from submarine hydrothermal vents [J]. Ore Geology Reviews, 72(11): 728–745.

    Google Scholar

    [8] Koglin N, Frimmel H E, Minter W E L, et al. 2009. Trace−element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 45(3): 259−280.

    Google Scholar

    [9] Large R R, Maslennikow V V, Robert F, et a1. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena gold province, Russia[J]. Economic Geology, 102: 1233−1267. doi: 10.2113/gsecongeo.102.7.1233

    CrossRef Google Scholar

    [10] Palenik C S, Utsunomiya S, Reich M, et al. 2004. “Invisible” gold revealed: direct imaging of gold nanoparticles in a Carlin−type deposit[J]. American Mineralogist, 89(10): 1359−1366. doi: 10.2138/am-2004-1002

    CrossRef Google Scholar

    [11] Springer G, Schachner−Korn D, Long J V P. 1964. Metastable solid solution relations in the system FeS2−CoS2−NiS2[J]. Economic Geology, 59: 475−491. doi: 10.2113/gsecongeo.59.3.475

    CrossRef Google Scholar

    [12] 白志强. 2015. 川西南地区五峰组−龙马溪组页岩特征研究[D]. 成都理工大学硕士学位论文.

    Google Scholar

    [13] 陈多福, 陈先沛, 陈光谦, 等. 1997. 热水沉积作用与成矿效应[J]. 地质地球化学, (4): 7−12.

    Google Scholar

    [14] 段士刚, 董满华, 张作衡, 等. 2014. 西天山敦德. 铁矿床磁铁矿原位LA−ICP−MS 元素分析及意义[J]. 矿床地质, 33(6): 1325−1337. doi: 10.3969/j.issn.0258-7106.2014.06.011

    CrossRef Google Scholar

    [15] 丰成友, 张德全, 党兴彦. 2004. 中国钴资源及其开发利用概况[J]. 矿床地质, 23(1): 94−100. doi: 10.3969/j.issn.0258-7106.2004.01.011

    CrossRef Google Scholar

    [16] 冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA−ICPMS 微量元素制约[J]. 地学前缘, 24(6): 162−175.

    Google Scholar

    [17] 李红兵, 曾凡治. 2005. 金矿中的黄铁矿标型特征[J]. 地质找矿论丛, 21(3): 199−203. doi: 10.3969/j.issn.1001-1412.2005.03.011

    CrossRef Google Scholar

    [18] 梅建明. 2000. 浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究[J]. 现代地质, 14(1): 51−55.

    Google Scholar

    [19] 牟传龙, 葛祥英, 余谦, 等. 2019. 川西南地区五峰−龙马溪组黑色页岩古气候及物源特征: 来自新地2井地球化学记录[J]. 古地理学报, 21(5): 835−854.

    Google Scholar

    [20] 曲红军. 1988. 轿顶山式锰矿岩相古地理特征及成矿规律探讨[J]. 地质与勘探, (11): 7−13.

    Google Scholar

    [21] 盛继福, 李岩, 范书义. 1999. 大兴安岭中段铜多金属矿床矿物微量元素研究[J]. 矿床地质, 18(2): 57−64. doi: 10.3969/j.issn.0258-7106.1999.02.007

    CrossRef Google Scholar

    [22] 宋学信, 张景凯. 1986. 中国各种成因黄铁矿的微量元素特征[J]. 中国地质科学院矿床地质研究所所刊, 2: 166−175.

    Google Scholar

    [23] 苏桂萍, 李忠权, 应丹琳, 等. 2020. 四川盆地加里东古隆起形成演化及动力学成因机理[J], 地质学报, 94(6): 1794−1811.

    Google Scholar

    [24] 汤庆艳, 张铭杰, 余明, 等. 2013. 晚二叠世峨眉山地幔柱岩浆成矿作用[J]. 岩石矿物学杂志, 32(5): 681−692. doi: 10.3969/j.issn.1000-6524.2013.05.010

    CrossRef Google Scholar

    [25] 徐国风, 邵洁涟. 1980. 黄铁矿的标型特征及其实际意义[J]. 地质论评, 26(6): 541−546. doi: 10.3321/j.issn:0371-5736.1980.06.017

    CrossRef Google Scholar

    [26] 徐志刚, 陈毓川, 王登红, 等. 2008. 中国成矿区代划分方案[M]. 北京: 地质出版社.

    Google Scholar

    [27] 严育通, 李胜荣, 贾宝剑, 等. 2012. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 19(4): 214−226.

    Google Scholar

    [28] 叶甜, 李诺. 2015. 黄铁矿原位LA−ICP−MS 微量元素分析在金矿床中应用[J]. 地质科学, 50(4): 1178−1199. doi: 10.3969/j.issn.0563-5020.2015.04.010

    CrossRef Google Scholar

    [29] 曾云, 贺金良, 王秀京, 等. 2015. 四川省成矿区带划分及区域成矿规律[M]. 北京: 地质出版社.

    Google Scholar

    [30] 张靖宇, 陆永潮, 付孝悦, 等. 2017. 四川盆地涪陵地区五峰组−龙马溪组一段层序格架与沉积演化[J]. 地质科技情报, 36(4): 66−72.

    Google Scholar

    [31] 赵俊兴, 李光明, 秦克章, 等. 2013. 富含钴矿床研究进展与问题分析[J]. 科学通报, 64(24): 2484−2500.

    Google Scholar

    [32] 周涛发, 张乐骏, 袁峰, 等. 2010. 安徽铜陵新桥Cu−Au−S 矿床黄铁矿微量元素LA−ICP−MS 原位测定及其对矿床成因的制约[J]. 地学前缘, 17(2): 306−319.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(548) PDF downloads(129) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint