2024 Vol. 43, No. 6
Article Contents

ZHANG Jiwei, CHEN Huayong, DENG Yirong, ZHANG Junling. 2024. The current and future research trends of carbon emission in nonferrous metal industry. Geological Bulletin of China, 43(6): 1021-1031. doi: 10.12097/gbc.2023.02.006
Citation: ZHANG Jiwei, CHEN Huayong, DENG Yirong, ZHANG Junling. 2024. The current and future research trends of carbon emission in nonferrous metal industry. Geological Bulletin of China, 43(6): 1021-1031. doi: 10.12097/gbc.2023.02.006

The current and future research trends of carbon emission in nonferrous metal industry

More Information
  • In recent years, climate change has become increasingly critical, and the metal industry, as a major consumer of energy and emitter of greenhouse gases, is a significant contributor to industrial carbon emissions, necessitating further research. This study uses CiteSpace for bibliometric analysis and knowledge mapping to examine global research trends in metal industry carbon emissions from 2000 to 2022. Findings indicate a second wave of explosive growth in domestic carbon emissions research, which will accelerate the green transition of high−emission sectors and create new opportunities for the green low−carbon market. CNKI data show a focus on carbon emissions from single metals like iron, aluminum, and copper, with a shift from basic topics such as "energy consumption" and "environmental benefits" to "carbon reduction" and "low−carbon transition". Web of Science data reveal comprehensive research on carbon sources, low−carbon technologies, and carbon sequestration, suggesting a new revolution in green technologies for metal development. This study further elaborates on future trends in carbon emission research in the metal industry, including carbon sources, green low−carbon technologies, carbon sequestration technologies, and ecological carbon sinks. Summarizing the current state and future directions of carbon emission research will help promote the green low−carbon transition and long−term sustainable development of China's metal industry.

  • 加载中
  • [1] Anita P. 2021. Carbon Dioxide Sequestration by Mines: Implications for Climate Change[J]. Climatic Change, 165(1): 1−17.

    Google Scholar

    [2] Azadi M, Northey S A, Ali S H, et al. 2020. Transparency on Greenhouse Gas Emissions from Mining to Enable Climate Change Mitigation, Nature Geoscience , 13: 100−104.

    Google Scholar

    [3] Boot−Handford M E, Abanades J C, Anthony E J, et al. 2013. Carbon capture and storage update[J]. Energy & Environmental Science, 7(1): 130−89.

    Google Scholar

    [4] Evelien M, Henning P, Riccardo S. 2021. Toward a more sustainable mining future with electrokinetic in situ leaching[J]. Science Advances, 7(18): eabf9971. doi: 10.1126/sciadv.abf9971

    CrossRef Google Scholar

    [5] Harrison, Anna L, Ian M, et al. 2013. Accelerated carbonation of Brucite in mine Tailings for carbon sequestration[J]. Environmental Science & Technology, 47(1): 126−34.

    Google Scholar

    [6] Harper, Gavin, Roberto S, et al. 2019. Recycling Lithium−Ion batteries from electric vehicles[J]. Nature, 575(7781): 75−86. doi: 10.1038/s41586-019-1682-5

    CrossRef Google Scholar

    [7] Kumar K, Anil, Matthew D, et al. 2020. Assessment of greenhouse gas mitigation options for the iron, gold, and potash mining sectors[J]. Journal of Cleaner Production, 245(2): 118718.

    Google Scholar

    [8] Kamrul I, Ryosuke Y, Masaharu M, et al. 2022. Ecological footprint accounting of mining areas and metal production of the world[J]. Resources, Conservation and Recycling, 183(8): 106384.

    Google Scholar

    [9] Li A, Marina M, Meina R, et al. 2019. Climate−related risk and financial statements: implications for regulators, preparers, auditors and users[J]. Australian Accounting Review, 29(3): 599−605. doi: 10.1111/auar.12296

    CrossRef Google Scholar

    [10] Gavin M M. 2007. Global trends in gold mining: towards quantifying environmental and resource sustainability[J]. Resources Policy, 32(1): 42−56.

    Google Scholar

    [11] Gavin M M. 2010. The environmental sustainability of mining in Australia: key mega−trends and looming constraints[J]. Resources Policy, 35(2): 98−115. doi: 10.1016/j.resourpol.2009.12.001

    CrossRef Google Scholar

    [12] Mehdi A, Stephen A N, Saleem H, et al. 2020. Transparency on Greenhouse Gas Emissions from Mining to Enable Climate Change Mitigation[J]. Nature Geoscience, 13(2): 100−104. doi: 10.1038/s41561-020-0531-3

    CrossRef Google Scholar

    [13] Milford R L, Pauliuk S, Allwood J M, et al. 2013. The roles of energy and material efficiency in meeting steel industry CO2 targets[J]. Environmental Science & Technology, 47(7): 3455−62.

    Google Scholar

    [14] Pan S Y, Chen Y H, Fan L S, et al. 2020. CO2 Mineralization and Utilization by Alkaline Solid Wastes for Potential Carbon Reduction[J]. Nature Sustainability, 3(5): 399−405. doi: 10.1038/s41893-020-0486-9

    CrossRef Google Scholar

    [15] Philop N, Eckelman M J, Jaak J P. 2014. Life cycle assessment of metals: a scientific synthesis[J]. Plos One, 9(7): e101298. doi: 10.1371/journal.pone.0101298

    CrossRef Google Scholar

    [16] Punia A. 2021. Carbon dioxide sequestration by mines: Implications for climate change[J]. Climatic change, 165: 10.

    Google Scholar

    [17] Ulrich S, Trench A, Hagemann S. 2020. Greenhouse gas emissions and production cost footprints in Australian gold mines[J]. Journal of Cleaner Production, 267(9): 122118.

    Google Scholar

    [18] Ulrich S, Trench A, Hagemann S. 2022. Gold mining greenhouse gas emissions, abatement measures, and the impact of a carbon price[J]. Journal of Cleaner Production, 340(3): 130851.

    Google Scholar

    [19] Ramakrishnan S, Koltun P. 2004. Global Warming Impact of the Magnesium Produced in China Using the Pidgeon Process[J]. Resources, Conservation and Recycling, 42 (1): 49–64.

    Google Scholar

    [20] Norgate T, Jahanshahi W, Rankin J. 2007. Assessing the environmental impact of metal production processes[J]. Journal of Cleaner Production, 15(8): 838−48.

    Google Scholar

    [21] Norgate T, Haque. 2010. Energy and greenhouse gas impacts of mining and mineral processing operations[J]. Journal of Cleaner Production, 18(3): 266−74. doi: 10.1016/j.jclepro.2009.09.020

    CrossRef Google Scholar

    [22] United Nations. 2015. Adoption of the Paris Agreement: FCCC/CP/2015/L. 9/Rev. 1[R]. Paris: United Nations Framework Convention on Climate Change.

    Google Scholar

    [23] Wang G F, Xu J, Ran L Y, et al. 2023. A green and efficient technology to recover rare earth elements from weathering crusts[J]. Nature Sustainability, 6(1): 81−92.

    Google Scholar

    [24] Yao B, Cai B F, Fan K, et al. 2019. Estimating direct CO2 and CO emission factors for industrial rare earth metal electrolysis[J]. Resources, Conservation and Recycling, 145 (6): 261–67.

    Google Scholar

    [25] Zeng W G, Feng S. 2015. The Terms of Capacity−building in Paris Agreement.

    Google Scholar

    [26] Zang Y Q , He L, Ma A H, et al. 2018. CaO−Based Sorbent Derived from Lime Mud and Bauxite Tailings for Cyclic CO2 Capture[J]. Environmental Science and Pollution Research, 25(28): 28015−24. doi: 10.1007/s11356-018-2825-1

    CrossRef Google Scholar

    [27] 陈文娟, 龚先政, 高峰, 等. 2020. 四川氟碳铈矿生产氧化钕的环境影响分析[J]. 材料导报, 34(2): 1315−18.

    Google Scholar

    [28] 丁仲礼. 2022. 碳中和对中国的挑战和机遇[J]. 中国新闻发布(实务版), (1): 16−23.

    Google Scholar

    [29] 丁宁, 高峰, 王志宏, 等. 2012. 原铝与再生铝生产的能耗和温室气体排放对比[J]. 中国金属学报, 22(10): 2908−15.

    Google Scholar

    [30] 董金池, 汪旭颖, 蔡博峰, 等. 2021. 中国钢铁行业CO2减排技术及成本研究[J]. 环境工程, 39(10): 23−31, 40.

    Google Scholar

    [31] 侯湖平, 张绍良, 丁忠义, 等. 2013. 煤矿区土地利用变化对生态系统植被碳储量的影响——以徐州垞城矿为例[J]. 煤炭学报, 38(10): 1850−55.

    Google Scholar

    [32] 黄翌, 汪云甲, 田丰, 等. 2014. 煤炭开采对植被-土壤系统扰动的碳效应研究[J]. 资源科学, 36(4): 817−23.

    Google Scholar

    [33] 李明阳, 高峰, 孙博学, 等. 2022. 基于目标情景的中国铝生产碳减排与碳达峰分析[J]. 中国金属学报, 32 (1): 148–58.

    Google Scholar

    [34] 刘祥宏, 阎永军, 刘伟, 等. 2022. 碳中和战略下煤矿区生态碳汇体系构建及功能提升展望[J]. 环境科学, 43(4): 2237−2240, 2242−2250.

    Google Scholar

    [35] 曲贞为, 张煜, 邵学东, 等. 2022. 双碳目标达成在铜冶炼企业中的探索[J]. 金属(冶炼部分), 3: 113−16.

    Google Scholar

    [36] 王丽娟, 邵朱强, 熊慧, 等. 2022. 中国铝冶炼行业二氧化碳排放达峰路径研究[J]. 环境科学研究, 35(2): 377−84.

    Google Scholar

    [37] 王满仓, 陈瑞英. 2021. “碳达峰、碳中和”对我国铜工业发展的影响[J]. 中国冶金, 50(6): 1−4.

    Google Scholar

    [38] 曾广圆, 杨建新, 宋小龙, 等. 2012. 火法炼铜能耗与碳排放情景分析——基于生命周期的视角[J]. 中国人口·资源与环境, 22(4): 46−50. doi: 10.3969/j.issn.1002-2104.2012.04.009

    CrossRef Google Scholar

    [39] 曾文革, 冯帅. 2015. 巴黎协定能力建设条款: 成就、不足与展望[J]. 环境保护, 43(24): 39−42.

    Google Scholar

    [40] 赵国庆, 洪湃, 班华, 等. 2022. 碳达峰碳中和背景下稀土产品的生命周期评价[J]. 金属工程, 12(5): 144−48.

    Google Scholar

    [41] 张宇星, 李贵才. 2021. 基于CiteSpace的粤港澳研究脉络可视化分析[J]. 热带地理, 41(1): 177−89.

    Google Scholar

    [42] 张琦, 沈佳林, 许立松. 2021. 中国钢铁工业碳达峰及低碳转型路径[J]. 钢铁, 56(10): 152−63.

    Google Scholar

    [43] 张宏. 2022. 闪速冶炼过程碳排放量计算和碳排放减排策略[J]. 金属(冶炼部分), 3: 109−12.

    Google Scholar

    [44] 张云, 胡寒, 周宏辉, 等. 2022. 云南省优势矿产尾矿砂捕集及矿化封存CO2潜力分析[J]. 中国环境科学, 42(9): 4351−61.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(678) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint