Citation: | ANKAR Akbar, CHEN Yuelong, LIANG Qiankun, KANG Huan. 2024. Zircon U−Pb ages and Hf isotopic compositions of river sediments from the Gonghe Basin and implication on tectonics and evolution of the crust. Geological Bulletin of China, 43(6): 1004-1020. doi: 10.12097/gbc.2023.01.012 |
To reveal the history of tectonic activity and crustal evolution in the sedimentary source area of the Gonghe Basin, U−Pb dating and Hf isotope analysis of detrital zircons in the floodplain sediments of the Qushian river and Xi river in the Gonghe Basin were analyzed by LA−MC−ICP−MS approach in this study. It was revealed that the U−Pb age of these detrital zircons can be divided into 5 groups: 309~172 Ma, 471~368 Ma, 943~737 Ma, 2368~1698 Ma, 2543~2453 Ma.According to the tectonic−magmatic events in the study area, it is concluded that the detrital sediments of the floodplains of the Qushian River and Xi River are provided by the Western Qinling block at different times. There are two main detrital zircon U−Pb ages, 236 Ma and 403 Ma, reflecting the geological record of the collision of blocks in different parts of the paleo and proto−Tethys oceans, induced strong magmatic events, and the emergence of rift valleys and neonatal ocean basins in the post−collision extension stage. The features of Hf isotopic composition revealed that the crust in the source area underwent a major accretion period at 2.7~1.3 Ga, and created 84% of the current crust. εHf(t) value ranges between −14.7 and +15.0, Hf depleted mode age in the range of 3.6~0.24 Ga, indicating the presence of Paleoarchean ancient crust substance in the source area substrata. Since 0.5 Ga, the growth of the earth's crust has mainly been dominated by the recycling of ancient crust substance, and the growth of the crust has stopped at 0.28 Ga. Furthermore, using formula of recycling ratio, ratios between remelting and juvenile crust with age have been calculated.
[1] | Bao C, Chen Y L, Guo R, et al. 2013. Growth rate of continental crust in the northeast margin of the North China Craton: Constraints from the U−Pb dating and Lu−Hf isotopes of detrital zircons from the Laoha River[J]. Geochemical Society of Japan, 47(5): 547−565. doi: 10.2343/geochemj.2.0277 |
[2] | Cédric C, Bernard L, Serge F, et al. 2006. Sequence stratigraphy and tectonosedimentary history of the Upper Jurassic of the Eastern Paris Basin (Lower and Middle Oxfordian, Northeastern France)[J]. Sedimentary Geology, 197(3): 235−266. |
[3] | Chen Y X , Song S G, Niu Y L, et al. 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone[J]. Geochimica et Cosmochimica Acta, 132: 311−336. |
[4] | Dong Y P, Zhang G W, Lai S C, et al. 1999. An ophiolitic tectonic melange first discovered in Huashan area, south margin of Qinling Orogenic Belt, and its tectonic implications[J]. Science in China (Series D): Earth Sciences, 42(3): 292−302. |
[5] | Dong Y P, Zhang G W, Neubauer F, et al. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213−237. doi: 10.1016/j.jseaes.2011.03.002 |
[6] | Dong Y P, Liu X M, Neubauer F, et al. 2013. Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U–Pb ages[J]. Tectonophysics, 586: 173−191. doi: 10.1016/j.tecto.2012.11.018 |
[7] | Fang X M, Zhang W L, Meng Q Q, et al. 2007. High−resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 258(1): 293−306. |
[8] | Feng Y F, Zhang X X, Zhang B, et al. 2018. The geothermal formation mechanism in the Gonghe Basin: Discussion and analysis from the geological background[J]. China Geology, 1(3): 331−345. doi: 10.31035/cg2018043 |
[9] | Gehrels G, Kapp P, DeCelles P, et al. 2011. Detrital zircon geochronology of pre−Tertiary strata in the Tibetan−Himalayan orogen[J]. Tectonics, 30(5): 127−149. |
[10] | Goldstein S L, Arndt L T, Stallard R F. 1997. The history of a continent from U−Pb ages of zircons from Orinoco River sand and Sm−Nd isotopes in Orinoco basin river sediments[J]. Chemical Geology, 139(1): 271−286. |
[11] | Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LA−MC−ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133−147. doi: 10.1016/S0016-7037(99)00343-9 |
[12] | Iizuka T, Komiya T, Rino S, et al. 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth[J]. Geochimica et Cosmochimica Acta, 74(8): 2450−2472. doi: 10.1016/j.gca.2010.01.023 |
[13] | Iizuka T, Yamaguchi T, Itano K, et al. 2017. What Hf isotopes in zircon tell us about crust–mantle evolution[J]. Lithos, 274/275: 304−327. doi: 10.1016/j.lithos.2017.01.006 |
[14] | Kang H, Chen Y L, Li D P, et al. 2018. Zircon U−Pb ages and Hf isotopic compositions of fluvial sediments from the Huangshui, Beichuan, and Xichuan rivers, Northwest China: Constraints on the formation and evolution history of the Central Qilian Block[J]. Geochemical Society of Japan, 52(1): 37−57. doi: 10.2343/geochemj.2.0495 |
[15] | Li D P, Chen Y L, Zhou J, et al. 2019. Continuity of the Western Qinling and Qaidam−Qilian blocks: Evidence from Precambrian and Permian–Triassic strata around the Gonghe Basin area, NW China[J]. Lithos, 55(5): 3601−3614. |
[16] | Li W, Neubauer F, Liu J Y, et al. 2013. Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun Mountains: Constraints from zircon dating of granitoids and modern river sands[J]. Journal of Asian Earth Sciences, 77: 183−202. doi: 10.1016/j.jseaes.2013.08.030 |
[17] | Li X W, Mo X X, Bader T, et al. 2014. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Science, 95: 164−181. doi: 10.1016/j.jseaes.2014.07.017 |
[18] | Li X W, Mo X X, Yu X H, et al. 2013. Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn−collision?[J]. Lithos, 172/173: 158−174. doi: 10.1016/j.lithos.2013.04.010 |
[19] | Luo B J, Zhang H F, Lü X B. 2012. U–Pb zircon dating, geochemical and Sr–Nd–Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: petrogenesis and tectonic implications[J]. Science in China (Series D): Earth Science, 164(4): 551−569. |
[20] | Rudnick R L, Fountain D M. 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective[J]. Reviews of Gcophysics, 3: 267−309. |
[21] | Söderlund U, Patchett J, Vervoort J, et al. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3): 311−324. |
[22] | Sun J G, Han S J, Zhang Y, et al. 2013. Diagenesis and metallogenetic mechanisms of the Tuanjiegou gold deposit from the Lesser Xing’an Range, NE China: Zircon U–Pb geochronology and Lu–Hf isotopic constraints[J]. Journal of Asian Earth Sciences, 62: 373−388. doi: 10.1016/j.jseaes.2012.10.021 |
[23] | Vervoort J D, Patchett P J. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derivedgranites[J]. Gcochimica et Cosmochimica Acta, 19: 3717−3733. |
[24] | Wang J, Yu H C, He D Y, et al. 2020. Geochronology and geochemistry of the Yidi’nan quartz diorite in the West Qinling, China: implications for evolution of the Palaeo−Tethys Ocean[J]. Wiley, 56(4): 2277−2295. |
[25] | Wu F , Yang J, Wilds S, et al. 2007. Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research, 159(3): 155−177. |
[26] | Yang G X, Yang S, Wei L, et al. 2015. Petrogenesis and geodynamic significance of the Late Triassic Tadong adakitic pluton in West Qinling, central China[J]. International Geology Review, 57(13): 1755−1771. doi: 10.1080/00206814.2015.1024291 |
[27] | Yang L M, Song S G, Mark A, et al. 2014. Oceanic accretionary belt in the WestQinling Orogen: Links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 2018, 64. 137−162. |
[28] | Zhang L C , Gao S, Yuan L H, et al. 2007. Sr−Nd−Pb isotopes of the Early Paleozoic mafic−ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition[J]. Springer Science and Business Media Llc, 50(9): 1293−1301. |
[29] | Zhao T Y, Feng Q L, Metcalfe L, et al. 2017. Detrital zircon U−Pb−Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SW China: Implications for Proto−Tethys and Paleo−Tethys evolution and Gondwana reconstruction[J]. Gondwana Research, 51: 193−208. doi: 10.1016/j.gr.2017.07.012 |
[30] | Zou F H, Deng L H, Santosh S, et al. 2022. Petrogenesis of the Permian granitoids in the western Gonghe basin, NE Tibetan Plateau (China): Implications for the Late Paleozoic tectonic evolution of the Paleo−Tethys Ocean[J]. Lithos, 426/427: 106778. doi: 10.1016/j.lithos.2022.106778 |
[31] | 操雨森, 黄始琪, 周炜鉴, 等. 2020. 西秦岭天水关子镇变玄武岩的地球化学特征及大地构造环境[J]. 地质论评, 66(3): 625−636. |
[32] | 常宏, 金章东, 安芷生. 2009. 青海南山隆起的沉积证据及其对青海湖−共和盆地构造分异演化的指示[J]. 地质论评, 55(1): 49−57. doi: 10.3321/j.issn:0371-5736.2009.01.006 |
[33] | 陈隽璐, 徐学义, 王洪亮, 等. 2008. 北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J]. 现代地质, 22(1): 8−31. doi: 10.3969/j.issn.1000-8527.2008.01.006 |
[34] | 陈希节, 贠晓瑞, 雷敏, 等. 2020. 青海共和盆地中三叠世花岗岩组合岩石成因: 地球化学、锆石U−Pb年代学及Hf同位素约束[J]. 岩石学报, 36(10): 3152−3170. |
[35] | 陈岳龙, 李大鹏, 周建, 等. 2008. 中国西秦岭碎屑锆石U−Pb年龄及其构造意义[J]. 地学前缘, (4): 88−107. doi: 10.3321/j.issn:1005-2321.2008.04.011 |
[36] | 冯益民, 曹宣铎, 张二朋, 等. 2003. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, (1): 1−10. doi: 10.3969/j.issn.1009-6248.2003.01.001 |
[37] | 高翔宇. 2019. 西秦岭临潭地区晚古生代沉积地层地质特征及地质意义[D]. 长安大学硕士学位论文: 1−18. |
[38] | 高奕霖. 2021. 祁连造山带前寒武纪基底岩系碎屑锆石年代学及其构造意义[D]. 西北大学硕士学位论文: 23−34. |
[39] | 郭安林, 张国伟, 强娟等. 2007. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 25(1): 1−12. doi: 10.3969/j.issn.1000-0569.2007.01.001 |
[40] | 郭安林, 张国伟, 孙延贵, 等. 2009. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr−Nd−Pb同位素地球化学及其地质意义[J]. 岩石学报, (4): 747−754. |
[41] | 何梦颖. 2014. 长江河流沉积物矿物学、地球化学和碎屑锆石年代学物源示踪研究[D]. 南京大学博士学位论文: 48−94. |
[42] | 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010 |
[43] | 侯可军, 李延河, 邹天人, 等. 2007. LA−MC−ICP−MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, (10): 2595−2604. |
[44] | 孔令添, 黎敦朋, 张森琦, 等. 2019. 青海共和盆地东部曲乃亥花岗闪长岩锆石U−Pb定年及地球化学特征[J]. 地质找矿论丛, 34(3): 423−431. doi: 10.6053/j.issn.1001-1412.2019.03.012 |
[45] | 李康宁, 刘伯崇, 狄永军. 2020. 三叠纪西秦岭西北部洋俯冲的记录: 来自镁安山岩/高镁安山岩的证据[J]. 中国地质, 47(3): 709−724. doi: 10.12029/gc20200311 |
[46] | 李三忠, 赵淑娟, 余珊, 等. 2016. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报, 32(9): 2628−2644. |
[47] | 梁国冰. 2019. 西秦岭临潭地区三叠纪地层地质特征与物源分析[D]. 长安大学硕士学位论文: 3−34. |
[48] | 骆必继, 张宏飞, 肖尊奇. 2012. 西秦岭印支早期美武岩体的岩石成因及其构造意义[J]. 地学前缘, 19(3): 199−213. |
[49] | 骆必继. 2013. 西秦岭造山带印支期岩浆作用及深部过程[D]. 中国地质大学(北京)博士学位论文: 4−78. |
[50] | 马超, 汤艳杰, 英基丰. 2019. 俯冲带岩浆作用与大陆地壳生长[J]. 地球科学, 44(4): 1128−1142. |
[51] | 裴先治, 李佐臣, 丁仨平, 等. 2005. 西秦岭天水地区岛弧型基性岩浆杂岩的地球化学特征及形成时代[J]. 中国地质, (4): 529−540. |
[52] | 裴先治, 丁仨平, 张国伟, 等. 2007. 西秦岭天水地区百花基性岩浆杂岩的LA−ICP−MS锆石U−Pb年龄及地球化学特征[J]. 中国科学, 37(A01): 11−35. |
[53] | 宋述光, 吴珍珠, 杨立明, 等. 2019. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 35(10): 2948−2970. doi: 10.18654/1000-0569/2019.10.02 |
[54] | 宋志杰, 刘文灿, 张宏远, 等. 2019. 祁连山西段玉石沟地区上二叠统砂岩碎屑锆石年代学及其地质意义[J]. 现代地质, 33(1): 112−120. |
[55] | 孙郎, 杨传, 孙智新, 等. 2022. 中祁连西段前寒武纪地层时代新认识: 肃北地区石板墩铁矿的碎屑锆石U−Pb年代学[J]. 地层学杂志, 46(3): 215−229. |
[56] | 孙延贵. 2004. 西秦岭−东昆仑造山带的衔接转换与共和坳拉谷[D]. 西北大学博士学位论文: 13−59. |
[57] | 谭人文, 王永, 陈柏林, 等. 2020. 西秦岭何家庄−老虎窑岩体U−Pb年龄和成因及其对板块俯冲时间的限定[J]. 中国地质, 47(4): 1155−1172. |
[58] | 王洪亮, 何世平, 陈隽璐, 等. 2006. 北秦岭西段红花铺俯冲型侵人体LA−ICPMS定年及其地质意义[C]// 2006年全国博士生学术论坛: 28−56. |
[59] | 王洪亮, 徐学义, 陈隽璐, 等. 2009. 北秦岭西段岩湾加里东期碰撞型侵入体形成时代及地球化学特征[J]. 地质学报, 83(3): 12−39. doi: 10.3321/j.issn:0001-5717.2009.03.005 |
[60] | 王婧, 张宏飞, 徐旺春, 等. 2008. 西秦岭党川地区花岗岩的成因及其构造意义[J]. 地球科学—中国地质大学学报, (4): 474−486. |
[61] | 韦萍, 莫宣学, 喻学惠, 等. 2013. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 29(11): 3981−3992. |
[62] | 吴才来, 姚尚志, 杨经绥, 等. 2006. 北祁连洋早古生代双向俯冲的花岗岩证据[J]. 中国地质, 33(6): 1197−1208. doi: 10.3969/j.issn.1000-3657.2006.06.002 |
[63] | 吴才来, 徐学义, 高前明, 等. 2010. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, (4): 18−42. |
[64] | 吴才来, 雷敏, 武秀萍, 等. 2011, 南秦岭新院岩体及其包体的锆石SHRIMP U−Pb定年和意义[J]. 地质论评, (6): 17−45. |
[65] | 吴才来, 刘春花, 郜源红, 等. 2013. 南秦岭麻池河乡和沙河湾花岗岩体锆石LA−ICP−MS U−Pb年代学及Lu−Hf同位素组成[J]. 地学前缘, (5): 21−51. |
[66] | 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01 |
[67] | 徐多勋, 杨拴海, 李瑞保, 等. 2015. 西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 37(3): 12. doi: 10.3969/j.issn.1672-6561.2015.03.005 |
[68] | 徐学义, 陈隽璐, 高婷, 等. 2014. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 30(2): 371−389. |
[69] | 易惬, 吴元保. 2016. 秦岭造山带武关和刘岭单元变沉积岩碎屑锆石U−Pb年代学和Hf同位素研究及其地质意义[C]//2016中国地球科学联合学术年会论文集: 4−27. |
[70] | 余珊. 2015. 全球背景下中国华北与华南板块重建: 从Rodinia裂解到Gondwana形成 [D]. 中国海洋大学博士学位论文: 24−78. |
[71] | 杨明桂, 王光辉. 2019. 华南陆区板块活动与构造体系的形成演化——纪念李四光先生诞辰130周年[J]. 地质学报, 93(3): 528−544. |
[72] | 张国伟, 郭安林, 姚安平. 2004. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, (3): 23−32. doi: 10.3321/j.issn:1005-2321.2004.03.004 |
[73] | 张宏飞, 陈岳龙, 徐旺春, 等. 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报, (12): 2910−2922. doi: 10.3321/j.issn:1000-0569.2006.12.009 |
[74] | 张帅, 王超, 郝江波, 等. 2022. 中祁连党河南山—木里地区早古生代火山−沉积岩系锆石U−Pb年代学、物源示踪及其地质意义[J]. 岩石学报, 38(3): 813−842. doi: 10.18654/1000-0569/2022.03.13 |
[75] | 张英利, 王宗起. 2011. 西秦岭造山带徽县—成县盆地早白垩世沉积物源分析——锆石LA−ICP−MS U−Pb年代学的约束[J]. 地质通报, 30(1): 37−50. doi: 10.3969/j.issn.1671-2552.2011.01.004 |
[76] | 赵金祥, 李玮, 康文彬. 2021. 勉略构造带构造变形过程及其地质意义[J]. 地质学报, 95(11): 3220−3233. doi: 10.3969/j.issn.0001-5717.2021.11.005 |
[77] | 赵无忌. 2015. 黄河上游贵德盆地滑坡泥石流扇发育特征及地貌演化过程[D]. 中国地质大学(北京)博士学位论文: 24−58. |
[78] | 周瑶琪, 姚旭. 2015. 原特提斯洋到古特提斯洋的演化——来自热水硅质岩的沉积记录[C]//2015年全国沉积学大会沉积学与非常规资源论文摘要集: 224−248. |
Geological sketch of the Gonghe Basin region
Simplified geological map of multi-stage intrusions, Precambrian to Triassic stratigraphy and sample locations around the Gonghe Basin
CL images of the zircon grains from sample HHZ0729-3S and QS0729S
Sample HHZ0730-3S and QS0729S detrital zircon Th/U ratio
U−Pb concordia plots of detrital zircon in the river sediments from the Gonghe Basin
Histograms of the detrital zircon U−Pb ages in the river sediments from the Gonghe Basin
Age-εHf(t) of detrital zircons (a) and histogram of Hf depleted mode age (b) of the detrital zircons in the river sediments from the Gonghe Basin
Detrital zircon U–Pb ages distribution patterns of sedimentary rocks in different strata from Precambrian to Triassic(a~c) and around the Gonghe Basin(d~f)
Tectonic evolution of the Western Qinling Block
Cumulative probability curves of U−Pb age and Hf depleted mode age of detrital zircon in the river sediments from the Gonghe Basin
Remelting rate of each period in the provenance of detrital river sediments from the Gonghe basin