2024 Vol. 43, No. 6
Article Contents

ANKAR Akbar, CHEN Yuelong, LIANG Qiankun, KANG Huan. 2024. Zircon U−Pb ages and Hf isotopic compositions of river sediments from the Gonghe Basin and implication on tectonics and evolution of the crust. Geological Bulletin of China, 43(6): 1004-1020. doi: 10.12097/gbc.2023.01.012
Citation: ANKAR Akbar, CHEN Yuelong, LIANG Qiankun, KANG Huan. 2024. Zircon U−Pb ages and Hf isotopic compositions of river sediments from the Gonghe Basin and implication on tectonics and evolution of the crust. Geological Bulletin of China, 43(6): 1004-1020. doi: 10.12097/gbc.2023.01.012

Zircon U−Pb ages and Hf isotopic compositions of river sediments from the Gonghe Basin and implication on tectonics and evolution of the crust

More Information
  • To reveal the history of tectonic activity and crustal evolution in the sedimentary source area of the Gonghe Basin, U−Pb dating and Hf isotope analysis of detrital zircons in the floodplain sediments of the Qushian river and Xi river in the Gonghe Basin were analyzed by LA−MC−ICP−MS approach in this study. It was revealed that the U−Pb age of these detrital zircons can be divided into 5 groups: 309~172 Ma, 471~368 Ma, 943~737 Ma, 2368~1698 Ma, 2543~2453 Ma.According to the tectonic−magmatic events in the study area, it is concluded that the detrital sediments of the floodplains of the Qushian River and Xi River are provided by the Western Qinling block at different times. There are two main detrital zircon U−Pb ages, 236 Ma and 403 Ma, reflecting the geological record of the collision of blocks in different parts of the paleo and proto−Tethys oceans, induced strong magmatic events, and the emergence of rift valleys and neonatal ocean basins in the post−collision extension stage. The features of Hf isotopic composition revealed that the crust in the source area underwent a major accretion period at 2.7~1.3 Ga, and created 84% of the current crust. εHf(t) value ranges between −14.7 and +15.0, Hf depleted mode age in the range of 3.6~0.24 Ga, indicating the presence of Paleoarchean ancient crust substance in the source area substrata. Since 0.5 Ga, the growth of the earth's crust has mainly been dominated by the recycling of ancient crust substance, and the growth of the crust has stopped at 0.28 Ga. Furthermore, using formula of recycling ratio, ratios between remelting and juvenile crust with age have been calculated.

  • 加载中
  • [1] Bao C, Chen Y L, Guo R, et al. 2013. Growth rate of continental crust in the northeast margin of the North China Craton: Constraints from the U−Pb dating and Lu−Hf isotopes of detrital zircons from the Laoha River[J]. Geochemical Society of Japan, 47(5): 547−565. doi: 10.2343/geochemj.2.0277

    CrossRef Google Scholar

    [2] Cédric C, Bernard L, Serge F, et al. 2006. Sequence stratigraphy and tectonosedimentary history of the Upper Jurassic of the Eastern Paris Basin (Lower and Middle Oxfordian, Northeastern France)[J]. Sedimentary Geology, 197(3): 235−266.

    Google Scholar

    [3] Chen Y X , Song S G, Niu Y L, et al. 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone[J]. Geochimica et Cosmochimica Acta, 132: 311−336.

    Google Scholar

    [4] Dong Y P, Zhang G W, Lai S C, et al. 1999. An ophiolitic tectonic melange first discovered in Huashan area, south margin of Qinling Orogenic Belt, and its tectonic implications[J]. Science in China (Series D): Earth Sciences, 42(3): 292−302.

    Google Scholar

    [5] Dong Y P, Zhang G W, Neubauer F, et al. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213−237. doi: 10.1016/j.jseaes.2011.03.002

    CrossRef Google Scholar

    [6] Dong Y P, Liu X M, Neubauer F, et al. 2013. Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U–Pb ages[J]. Tectonophysics, 586: 173−191. doi: 10.1016/j.tecto.2012.11.018

    CrossRef Google Scholar

    [7] Fang X M, Zhang W L, Meng Q Q, et al. 2007. High−resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 258(1): 293−306.

    Google Scholar

    [8] Feng Y F, Zhang X X, Zhang B, et al. 2018. The geothermal formation mechanism in the Gonghe Basin: Discussion and analysis from the geological background[J]. China Geology, 1(3): 331−345. doi: 10.31035/cg2018043

    CrossRef Google Scholar

    [9] Gehrels G, Kapp P, DeCelles P, et al. 2011. Detrital zircon geochronology of pre−Tertiary strata in the Tibetan−Himalayan orogen[J]. Tectonics, 30(5): 127−149.

    Google Scholar

    [10] Goldstein S L, Arndt L T, Stallard R F. 1997. The history of a continent from U−Pb ages of zircons from Orinoco River sand and Sm−Nd isotopes in Orinoco basin river sediments[J]. Chemical Geology, 139(1): 271−286.

    Google Scholar

    [11] Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LA−MC−ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133−147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [12] Iizuka T, Komiya T, Rino S, et al. 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth[J]. Geochimica et Cosmochimica Acta, 74(8): 2450−2472. doi: 10.1016/j.gca.2010.01.023

    CrossRef Google Scholar

    [13] Iizuka T, Yamaguchi T, Itano K, et al. 2017. What Hf isotopes in zircon tell us about crust–mantle evolution[J]. Lithos, 274/275: 304−327. doi: 10.1016/j.lithos.2017.01.006

    CrossRef Google Scholar

    [14] Kang H, Chen Y L, Li D P, et al. 2018. Zircon U−Pb ages and Hf isotopic compositions of fluvial sediments from the Huangshui, Beichuan, and Xichuan rivers, Northwest China: Constraints on the formation and evolution history of the Central Qilian Block[J]. Geochemical Society of Japan, 52(1): 37−57. doi: 10.2343/geochemj.2.0495

    CrossRef Google Scholar

    [15] Li D P, Chen Y L, Zhou J, et al. 2019. Continuity of the Western Qinling and Qaidam−Qilian blocks: Evidence from Precambrian and Permian–Triassic strata around the Gonghe Basin area, NW China[J]. Lithos, 55(5): 3601−3614.

    Google Scholar

    [16] Li W, Neubauer F, Liu J Y, et al. 2013. Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun Mountains: Constraints from zircon dating of granitoids and modern river sands[J]. Journal of Asian Earth Sciences, 77: 183−202. doi: 10.1016/j.jseaes.2013.08.030

    CrossRef Google Scholar

    [17] Li X W, Mo X X, Bader T, et al. 2014. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Science, 95: 164−181. doi: 10.1016/j.jseaes.2014.07.017

    CrossRef Google Scholar

    [18] Li X W, Mo X X, Yu X H, et al. 2013. Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn−collision?[J]. Lithos, 172/173: 158−174. doi: 10.1016/j.lithos.2013.04.010

    CrossRef Google Scholar

    [19] Luo B J, Zhang H F, Lü X B. 2012. U–Pb zircon dating, geochemical and Sr–Nd–Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: petrogenesis and tectonic implications[J]. Science in China (Series D): Earth Science, 164(4): 551−569.

    Google Scholar

    [20] Rudnick R L, Fountain D M. 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective[J]. Reviews of Gcophysics, 3: 267−309.

    Google Scholar

    [21] Söderlund U, Patchett J, Vervoort J, et al. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3): 311−324.

    Google Scholar

    [22] Sun J G, Han S J, Zhang Y, et al. 2013. Diagenesis and metallogenetic mechanisms of the Tuanjiegou gold deposit from the Lesser Xing’an Range, NE China: Zircon U–Pb geochronology and Lu–Hf isotopic constraints[J]. Journal of Asian Earth Sciences, 62: 373−388. doi: 10.1016/j.jseaes.2012.10.021

    CrossRef Google Scholar

    [23] Vervoort J D, Patchett P J. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derivedgranites[J]. Gcochimica et Cosmochimica Acta, 19: 3717−3733.

    Google Scholar

    [24] Wang J, Yu H C, He D Y, et al. 2020. Geochronology and geochemistry of the Yidi’nan quartz diorite in the West Qinling, China: implications for evolution of the Palaeo−Tethys Ocean[J]. Wiley, 56(4): 2277−2295.

    Google Scholar

    [25] Wu F , Yang J, Wilds S, et al. 2007. Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research, 159(3): 155−177.

    Google Scholar

    [26] Yang G X, Yang S, Wei L, et al. 2015. Petrogenesis and geodynamic significance of the Late Triassic Tadong adakitic pluton in West Qinling, central China[J]. International Geology Review, 57(13): 1755−1771. doi: 10.1080/00206814.2015.1024291

    CrossRef Google Scholar

    [27] Yang L M, Song S G, Mark A, et al. 2014. Oceanic accretionary belt in the WestQinling Orogen: Links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 2018, 64. 137−162.

    Google Scholar

    [28] Zhang L C , Gao S, Yuan L H, et al. 2007. Sr−Nd−Pb isotopes of the Early Paleozoic mafic−ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition[J]. Springer Science and Business Media Llc, 50(9): 1293−1301.

    Google Scholar

    [29] Zhao T Y, Feng Q L, Metcalfe L, et al. 2017. Detrital zircon U−Pb−Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SW China: Implications for Proto−Tethys and Paleo−Tethys evolution and Gondwana reconstruction[J]. Gondwana Research, 51: 193−208. doi: 10.1016/j.gr.2017.07.012

    CrossRef Google Scholar

    [30] Zou F H, Deng L H, Santosh S, et al. 2022. Petrogenesis of the Permian granitoids in the western Gonghe basin, NE Tibetan Plateau (China): Implications for the Late Paleozoic tectonic evolution of the Paleo−Tethys Ocean[J]. Lithos, 426/427: 106778. doi: 10.1016/j.lithos.2022.106778

    CrossRef Google Scholar

    [31] 操雨森, 黄始琪, 周炜鉴, 等. 2020. 西秦岭天水关子镇变玄武岩的地球化学特征及大地构造环境[J]. 地质论评, 66(3): 625−636.

    Google Scholar

    [32] 常宏, 金章东, 安芷生. 2009. 青海南山隆起的沉积证据及其对青海湖−共和盆地构造分异演化的指示[J]. 地质论评, 55(1): 49−57. doi: 10.3321/j.issn:0371-5736.2009.01.006

    CrossRef Google Scholar

    [33] 陈隽璐, 徐学义, 王洪亮, 等. 2008. 北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J]. 现代地质, 22(1): 8−31. doi: 10.3969/j.issn.1000-8527.2008.01.006

    CrossRef Google Scholar

    [34] 陈希节, 贠晓瑞, 雷敏, 等. 2020. 青海共和盆地中三叠世花岗岩组合岩石成因: 地球化学、锆石U−Pb年代学及Hf同位素约束[J]. 岩石学报, 36(10): 3152−3170.

    Google Scholar

    [35] 陈岳龙, 李大鹏, 周建, 等. 2008. 中国西秦岭碎屑锆石U−Pb年龄及其构造意义[J]. 地学前缘, (4): 88−107. doi: 10.3321/j.issn:1005-2321.2008.04.011

    CrossRef Google Scholar

    [36] 冯益民, 曹宣铎, 张二朋, 等. 2003. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, (1): 1−10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    CrossRef Google Scholar

    [37] 高翔宇. 2019. 西秦岭临潭地区晚古生代沉积地层地质特征及地质意义[D]. 长安大学硕士学位论文: 1−18.

    Google Scholar

    [38] 高奕霖. 2021. 祁连造山带前寒武纪基底岩系碎屑锆石年代学及其构造意义[D]. 西北大学硕士学位论文: 23−34.

    Google Scholar

    [39] 郭安林, 张国伟, 强娟等. 2007. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 25(1): 1−12. doi: 10.3969/j.issn.1000-0569.2007.01.001

    CrossRef Google Scholar

    [40] 郭安林, 张国伟, 孙延贵, 等. 2009. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr−Nd−Pb同位素地球化学及其地质意义[J]. 岩石学报, (4): 747−754.

    Google Scholar

    [41] 何梦颖. 2014. 长江河流沉积物矿物学、地球化学和碎屑锆石年代学物源示踪研究[D]. 南京大学博士学位论文: 48−94.

    Google Scholar

    [42] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [43] 侯可军, 李延河, 邹天人, 等. 2007. LA−MC−ICP−MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, (10): 2595−2604.

    Google Scholar

    [44] 孔令添, 黎敦朋, 张森琦, 等. 2019. 青海共和盆地东部曲乃亥花岗闪长岩锆石U−Pb定年及地球化学特征[J]. 地质找矿论丛, 34(3): 423−431. doi: 10.6053/j.issn.1001-1412.2019.03.012

    CrossRef Google Scholar

    [45] 李康宁, 刘伯崇, 狄永军. 2020. 三叠纪西秦岭西北部洋俯冲的记录: 来自镁安山岩/高镁安山岩的证据[J]. 中国地质, 47(3): 709−724. doi: 10.12029/gc20200311

    CrossRef Google Scholar

    [46] 李三忠, 赵淑娟, 余珊, 等. 2016. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报, 32(9): 2628−2644.

    Google Scholar

    [47] 梁国冰. 2019. 西秦岭临潭地区三叠纪地层地质特征与物源分析[D]. 长安大学硕士学位论文: 3−34.

    Google Scholar

    [48] 骆必继, 张宏飞, 肖尊奇. 2012. 西秦岭印支早期美武岩体的岩石成因及其构造意义[J]. 地学前缘, 19(3): 199−213.

    Google Scholar

    [49] 骆必继. 2013. 西秦岭造山带印支期岩浆作用及深部过程[D]. 中国地质大学(北京)博士学位论文: 4−78.

    Google Scholar

    [50] 马超, 汤艳杰, 英基丰. 2019. 俯冲带岩浆作用与大陆地壳生长[J]. 地球科学, 44(4): 1128−1142.

    Google Scholar

    [51] 裴先治, 李佐臣, 丁仨平, 等. 2005. 西秦岭天水地区岛弧型基性岩浆杂岩的地球化学特征及形成时代[J]. 中国地质, (4): 529−540.

    Google Scholar

    [52] 裴先治, 丁仨平, 张国伟, 等. 2007. 西秦岭天水地区百花基性岩浆杂岩的LA−ICP−MS锆石U−Pb年龄及地球化学特征[J]. 中国科学, 37(A01): 11−35.

    Google Scholar

    [53] 宋述光, 吴珍珠, 杨立明, 等. 2019. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 35(10): 2948−2970. doi: 10.18654/1000-0569/2019.10.02

    CrossRef Google Scholar

    [54] 宋志杰, 刘文灿, 张宏远, 等. 2019. 祁连山西段玉石沟地区上二叠统砂岩碎屑锆石年代学及其地质意义[J]. 现代地质, 33(1): 112−120.

    Google Scholar

    [55] 孙郎, 杨传, 孙智新, 等. 2022. 中祁连西段前寒武纪地层时代新认识: 肃北地区石板墩铁矿的碎屑锆石U−Pb年代学[J]. 地层学杂志, 46(3): 215−229.

    Google Scholar

    [56] 孙延贵. 2004. 西秦岭−东昆仑造山带的衔接转换与共和坳拉谷[D]. 西北大学博士学位论文: 13−59.

    Google Scholar

    [57] 谭人文, 王永, 陈柏林, 等. 2020. 西秦岭何家庄−老虎窑岩体U−Pb年龄和成因及其对板块俯冲时间的限定[J]. 中国地质, 47(4): 1155−1172.

    Google Scholar

    [58] 王洪亮, 何世平, 陈隽璐, 等. 2006. 北秦岭西段红花铺俯冲型侵人体LA−ICPMS定年及其地质意义[C]// 2006年全国博士生学术论坛: 28−56.

    Google Scholar

    [59] 王洪亮, 徐学义, 陈隽璐, 等. 2009. 北秦岭西段岩湾加里东期碰撞型侵入体形成时代及地球化学特征[J]. 地质学报, 83(3): 12−39. doi: 10.3321/j.issn:0001-5717.2009.03.005

    CrossRef Google Scholar

    [60] 王婧, 张宏飞, 徐旺春, 等. 2008. 西秦岭党川地区花岗岩的成因及其构造意义[J]. 地球科学—中国地质大学学报, (4): 474−486.

    Google Scholar

    [61] 韦萍, 莫宣学, 喻学惠, 等. 2013. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 29(11): 3981−3992.

    Google Scholar

    [62] 吴才来, 姚尚志, 杨经绥, 等. 2006. 北祁连洋早古生代双向俯冲的花岗岩证据[J]. 中国地质, 33(6): 1197−1208. doi: 10.3969/j.issn.1000-3657.2006.06.002

    CrossRef Google Scholar

    [63] 吴才来, 徐学义, 高前明, 等. 2010. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, (4): 18−42.

    Google Scholar

    [64] 吴才来, 雷敏, 武秀萍, 等. 2011, 南秦岭新院岩体及其包体的锆石SHRIMP U−Pb定年和意义[J]. 地质论评, (6): 17−45.

    Google Scholar

    [65] 吴才来, 刘春花, 郜源红, 等. 2013. 南秦岭麻池河乡和沙河湾花岗岩体锆石LA−ICP−MS U−Pb年代学及Lu−Hf同位素组成[J]. 地学前缘, (5): 21−51.

    Google Scholar

    [66] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [67] 徐多勋, 杨拴海, 李瑞保, 等. 2015. 西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 37(3): 12. doi: 10.3969/j.issn.1672-6561.2015.03.005

    CrossRef Google Scholar

    [68] 徐学义, 陈隽璐, 高婷, 等. 2014. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 30(2): 371−389.

    Google Scholar

    [69] 易惬, 吴元保. 2016. 秦岭造山带武关和刘岭单元变沉积岩碎屑锆石U−Pb年代学和Hf同位素研究及其地质意义[C]//2016中国地球科学联合学术年会论文集: 4−27.

    Google Scholar

    [70] 余珊. 2015. 全球背景下中国华北与华南板块重建: 从Rodinia裂解到Gondwana形成 [D]. 中国海洋大学博士学位论文: 24−78.

    Google Scholar

    [71] 杨明桂, 王光辉. 2019. 华南陆区板块活动与构造体系的形成演化——纪念李四光先生诞辰130周年[J]. 地质学报, 93(3): 528−544.

    Google Scholar

    [72] 张国伟, 郭安林, 姚安平. 2004. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, (3): 23−32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    CrossRef Google Scholar

    [73] 张宏飞, 陈岳龙, 徐旺春, 等. 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报, (12): 2910−2922. doi: 10.3321/j.issn:1000-0569.2006.12.009

    CrossRef Google Scholar

    [74] 张帅, 王超, 郝江波, 等. 2022. 中祁连党河南山—木里地区早古生代火山−沉积岩系锆石U−Pb年代学、物源示踪及其地质意义[J]. 岩石学报, 38(3): 813−842. doi: 10.18654/1000-0569/2022.03.13

    CrossRef Google Scholar

    [75] 张英利, 王宗起. 2011. 西秦岭造山带徽县—成县盆地早白垩世沉积物源分析——锆石LA−ICP−MS U−Pb年代学的约束[J]. 地质通报, 30(1): 37−50. doi: 10.3969/j.issn.1671-2552.2011.01.004

    CrossRef Google Scholar

    [76] 赵金祥, 李玮, 康文彬. 2021. 勉略构造带构造变形过程及其地质意义[J]. 地质学报, 95(11): 3220−3233. doi: 10.3969/j.issn.0001-5717.2021.11.005

    CrossRef Google Scholar

    [77] 赵无忌. 2015. 黄河上游贵德盆地滑坡泥石流扇发育特征及地貌演化过程[D]. 中国地质大学(北京)博士学位论文: 24−58.

    Google Scholar

    [78] 周瑶琪, 姚旭. 2015. 原特提斯洋到古特提斯洋的演化——来自热水硅质岩的沉积记录[C]//2015年全国沉积学大会沉积学与非常规资源论文摘要集: 224−248.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(693) PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint