2025 Vol. 44, No. 2~3
Article Contents

ZHANG Honghui, YUAN Yongsheng, LI Zhiwei, XIE Caifu, ZHANG Qidao, CHEN Guiren, WU Liang, ZHU Lidong, PAN Jiangtao, LI Shizhong, HU Guanyun, ZHANG Liyuan. 2025. The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event. Geological Bulletin of China, 44(2~3): 477-492. doi: 10.12097/gbc.2023.01.021
Citation: ZHANG Honghui, YUAN Yongsheng, LI Zhiwei, XIE Caifu, ZHANG Qidao, CHEN Guiren, WU Liang, ZHU Lidong, PAN Jiangtao, LI Shizhong, HU Guanyun, ZHANG Liyuan. 2025. The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event. Geological Bulletin of China, 44(2~3): 477-492. doi: 10.12097/gbc.2023.01.021

The discovery of the Early Cretaceous olive basaltic porphyrite in the Wumengshan area on the western margin of the Yangtze block and its implications for the intracontinental response to the continental margin collision orogenic event

More Information
  • Objective

    The absence of Yanshanian magmatic activities in the western margin of the Yangtze block has led to a lack of precise time records of tectonic movements during this period. In this study, Early Cretaceous basic intrusive rocks were discovered for the first time in the Wumengshan area of northeastern Yunnan. This discovery is of great significance for exploring the Yanshanian tectonic activities in the western margin of the Yangtze block.

    Methods

    This paper conducts research on the newly discovered intrusive rocks through detailed field geological observations, microscopic identification, zircon U−Pb dating, and petrogeochemical methods, and explores their genesis and geological significance.

    Results

    The lithology of the Early Cretaceous basic intrusive rocks is olivine basaltic porphyrite, which has a porphyritic texture and amygdaloidal structure. The phenocrysts are mainly plagioclase and olivine. The U−Pb concordia age of 31 zircon measurement points is 134.0 ± 0.4 Ma, indicating that the formation age is the early stage of the Early Cretaceous. Petrogeochemical characteristics show that these rocks are rich in alkalis, high in Ti and Al, and low in SiO2. They have a relatively high total rare earth content, depleted heavy rare earths, and obvious fractionation between light and heavy rare earths elements. These characteristics are highly similar to those of the Permian Emeishan basalts in the study area, suggesting that they are the same origin. They may be the metasomatized and enriched mantle at the tail of the Emeishan mantle plume formed in the Permian. Under the long−range extrusion effect of the subduction−collision in the Bangonghu−Nujiang suture zone, partial melting of the asthenosphere occurred. During the ascending and emplacement process, they underwent mild contamination with the crust, forming basic−ultrabasic intrusive rocks.

    Conclusions

    The Early Cretaceous olivine basaltic porphyrite indicates that the continental−margin collision orogeny between the Tethys tectonic domain and the western margin of the Yangtze Block has a significant long−range effect. Its discovery has extended the research on Yanshanian magmatic activities in western Yunnan to the Wumengshan area east of the Xiaojiang Fault Zone, filling the gap in the study of Yanshanian magmatic activities around the Sichuan Basin. The formation of olivine basaltic porphyrite also indicates that the large−scale intra−continental compressional orogeny in the western margin of the Yangtze Plate reached its peak. 134 Ma is the time record when the temperature and pressure of the intra−continental orogeny in the western margin of the Yangtze block reached their peak.

  • 加载中
  • [1] Baker M B, Wyllie P J. 1992. High−pressure apatite solubility in carbonate−rich liquids: Implications for mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 56(9): 3409−3422.

    Google Scholar

    [2] Chuan M S, Hu L, Lin R X, et al. 2024. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U−Pb age, trace element and Hf isotope constraints[J]. Earth Science Frontiers, 31(2): 204−223(in Chinese with English abstract).

    Google Scholar

    [3] Dai C G, Wang X H, Chen J S, et al. 2017. Editorial Board of the Regional Geology of China, Guizhou Province[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [4] Deng J F, Luo Z H, Su S G, et al. 2004. Petrogenesis, Tectonic Environment and Mineralization[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [5] Deng J, Yang L Q, Wang C M. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 27(9) : 2501−2509(in Chinese with English abstract).

    Google Scholar

    [6] Dong S W, Wu X H , Wu Z H, et al. 2000. On tectonic seesawing of the East Asia Continent—Global implieation of the Yanshanian movement[J]. Geological Review, 46(1): 8−13(in Chinese with English abstract).

    Google Scholar

    [7] Dong S W, Zhang Y Q, Chen X H, et al. 2008. The formation and deformational characteristics of East Asia multi−direction convergent tectonic system in Late Jurassic[J]. Acta Geoscientica Sinica, 29(3): 306−317(in Chinese with English abstract).

    Google Scholar

    [8] Dong S W, Zhang Y Q, Li H L, et al. 2019. The Yanshan orogeny and late Mesozoic multi−plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China Earth Sciences, 49(6): 913−938(in Chinese with English abstract).

    Google Scholar

    [9] Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463−513. doi: 10.1093/petrology/19.3.463

    CrossRef Google Scholar

    [10] Gorczyk W, Hobbs B, Gessner K, et al. 2013. Intracratonic geodynamics[J]. Gondwana Research, 24(3): 838−848.

    Google Scholar

    [11] Green H D, Ringwood E A. 1967. The genesis of basaltic magmas[J]. Contributiona to Mineralogy and Petrology, 15(2): 103−190. doi: 10.1007/BF00372052

    CrossRef Google Scholar

    [12] He B, Xu Y G, Xiao L, et al. 2003. Generation and spatial distribution of the Emeishan large igneous province: New evidence from stratigraphic records[J]. Acta Geological Sinica, 77(2): 194−202(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2003.tb00562.x

    CrossRef Google Scholar

    [13] He X Q, Liu A M, Xiao J F, et al. 2004. Report on the results of 1∶250 000 regional geological survey of Bijie County Sheet[R]. Guiyang: Guizhou Institute of Geological Survey(in Chinese).

    Google Scholar

    [14] Huang C, Ding W P, Zhang H H, et al. 2019. Report on 1∶50 000 regional geological survey of Dianweijie, Cangxi, Majie and Duomaga Sheets in Western Wumengshan, Yunnan[R]. Haikou: The 9th Detachment of the PAP gold force(in Chinese).

    Google Scholar

    [15] Hou Z Q, Chen W, Lu J R. 2002. Collision event during 177−135 Ma on the eastern margin of the Qinghai−Tibet Plateau: Evidence from 40Ar/ 39Ar dating for basalts on the western margin of the Yangtze Platform[J]. Acta Geologica Sinica, 76(2): 194−204. doi: 10.1111/j.1755-6724.2002.tb00085.x

    CrossRef Google Scholar

    [16] Houseman G A, Mckenzie D P, Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts[J]. Journal of Geophysical Research, 86(B7): 6115−6132. doi: 10.1029/JB086iB07p06115

    CrossRef Google Scholar

    [17] Houseman G A, Molnar P. 1997. Gravitational (rayleigh−taylor) instability of a layer with non−linear viscosity and convective thinning of continental lithosphere[J]. Geophysical Journal of the Royal Astronomical Society, 128(1): 125−150. doi: 10.1111/j.1365-246X.1997.tb04075.x

    CrossRef Google Scholar

    [18] Irvine T N, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523−548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [19] Lassiter J C, Depaolo D J, Mahoney J J, et al. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints[J]. Geophysical Monograph, 100: 335−355.

    Google Scholar

    [20] Li X H, Li W X, He B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543−559(in Chinese with English abstract).

    Google Scholar

    [21] Li Z Y, Lippert P, Ding L, et al. 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 44(9): 727−730.

    Google Scholar

    [22] Lu H J, Tian X B, Yun K, et al. 2018. Convective removal of the Tibetan Plateau mantle lithosphere by ~26 Ma[J]. Tectonophysics, 731−732: 17−34.

    Google Scholar

    [23] Liu J Q, He L, Chen F L, et al. 2021. Studies on the chronology and geochemistry of the green pisolites at the bottom of the Middle Triassic Guanling Formation in Yanjin area, northeastern Yunnan Province[J]. Acta Petrologica Sinica, 37(7): 2245−2255(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.16

    CrossRef Google Scholar

    [24] Liu M, Cui X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo–Asian collision?[J]. Tectonophysics, 393(1): 29−42.

    Google Scholar

    [25] Ludwig K R. 2003. Isoplot/Ex: a geochronological toolkit for Microsoft Excel, Version 3.00[M]. Berkeley: Geochronology Center, Special Publication.

    Google Scholar

    [26] Ma Y M, Yang T S, Bian W W, et al. 2018. A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa−Qiangtang collision and the maximum width of the Neo−Tethys[J]. Tectonics, 37(9/10): 3853−3876.

    Google Scholar

    [27] McDonough W F. 1990. Constraints on the composition of the continental lithospheric mantle[J]. Earth Planet. Sci. Lett., 101(1): 1−18. doi: 10.1016/0012-821X(90)90119-I

    CrossRef Google Scholar

    [28] McKenzie D P, O'Nions R K. 1991. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 32(1): 21−91.

    Google Scholar

    [29] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Sci. Rev., 37(3/4): 215−224.

    Google Scholar

    [30] Nickel K G. 1986. Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships[J]. Neues Jahrbuch Für Mineralogie−Abhandlungen, 155(3): 259−287.

    Google Scholar

    [31] Pan J T, Liu H H, Yuan Y S, et al. 2022a. Late Permian Xuanwei Formation tuff from the western margin of the Upper Yangtze: Constraints on volcanica ctivity and Paleotethyan arc volcanism in the Emeishan Large Igneous Province[J]. Acta Geologica Sinica, 96(6): 1985−2000(in Chinese with English abstract).

    Google Scholar

    [32] Pan J T, Wu L, Zhang H H, et al. 2022b. Report on 1∶50 000 regional geological survey of 9 Sheets including Wagang, Huanggeshu, Dawazi, Shiziba, Lianfeng, Daguan County, Huoshaoba, Wuzhai and Zhashang in Wumeng Mountain Area, Yunnan [R]. Kunming: Kunming General Resources Comprehensive Investigation Center of China Geological Survey(in Chinese).

    Google Scholar

    [33] Paton C, Woodhead J D, Hellstrom J C, et al. 2010. Improved laser ablation U−Pb zircon geochronology through robust downhole fractionation correction[J]. Geochem. Geophys. Geosyst., 11(3): 1−36.

    Google Scholar

    [34] Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth Planet. Sci. Lett., 19(2): 290−300. doi: 10.1016/0012-821X(73)90129-5

    CrossRef Google Scholar

    [35] Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contrib. Mineral. Petrol., 69(1): 33−47. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    [36] Ramsey M H, Potts P J, Webb P C, et al. 1995. An objective assessment of analytical method precision: Comparison of ICP−AES and XRF for the analysis of silicate rocks[J]. Chemical Geology, 124(1/2): 1−19.

    Google Scholar

    [37] Ruddiman W F, Raymo M E, Prell W L, et al. 1997. The uplift−climate connection: A synthesis[M]. New York and London: Plenum Press: 471−515.

    Google Scholar

    [38] Slama J, Kosler J, Condon D J, et al. 2008. Plesovice zircon: A new natural reference material for U/Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1−35.

    Google Scholar

    [39] Sun S S, McDonough W F, Saunders A D, et al. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [40] Tatsumi Y, Sakuyama M, Fukuyama H, et al. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones[J]. Journal of Geophysical Research, 88(B7): 5815−5825. doi: 10.1029/JB088iB07p05815

    CrossRef Google Scholar

    [41] Thompson J M, Meffre S, Danyushevsky L. 2018. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by lA−ICPMS[J]. Journal of Analytical Atomic Spectrometry, 33(2): 221−230. doi: 10.1039/C7JA00357A

    CrossRef Google Scholar

    [42] Turner S, Hawkesworth C, Liu J Q, et al. 1993. Timing of tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364(6432): 50−54. doi: 10.1038/364050a0

    CrossRef Google Scholar

    [43] Weaver B L. 1991. Trace element evidence for the origin of ocean−island basalts[J]. Geology, 19(2): 123−127. doi: 10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2

    CrossRef Google Scholar

    [44] Wei J. 2018. Petrology, petrogeochemistry and geodynamic significance of Emeishan basalt[D]. Master's Thesis of Chengdu University of Technology (in Chinese with English abstract).

    Google Scholar

    [45] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325−343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [46] Xiao L, Xu Y G, Chung S L, et al. 2003. Chemostratigraphic correlation of Upper Permian lavas from Yunnan Province, China: Extent of the emeishan large igneous province[J]. International geology review, 45(8): 753−766. doi: 10.2747/0020-6814.45.8.753

    CrossRef Google Scholar

    [47] Xie Y X, Ma L Y, Zhao G C, et al. 2020. Origin of the heping granodiorite pluton: Implications for syn−convergent extension and asthenosphere upwelling accompanying the Early Paleozoic orogeny in South China[J]. Gondwana Research, 85(4): 149−168.

    Google Scholar

    [48] Xu T, Zhang Z J, Liu B F, et al. 2015. Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity[J]. Science China: Earth Sciences, 45(5): 561−576 (in Chinese with English abstract).

    Google Scholar

    [49] Xu Y G. 1999. Roles of thermo−mechanic and chemical erosion in continental lithospheric thinning[J]. Petrology and Geochemistry, 18(1): 1−5.

    Google Scholar

    [50] Yan M D, Zhang D W, Fang X M, et al. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block: Implications for the evolution of the Paleo−and Meso−Tethys[J]. Gondwana Research, 39: 292−316. doi: 10.1016/j.gr.2016.01.012

    CrossRef Google Scholar

    [51] Zhang H, Huang H, Hou M C. 2020. Origin of tuffs from Upper Permian Wujiaping Formation in Chaotian section of Guangyuan area, Sichuan, China and its geological significance[J]. Journal of Earch Sciences and Environment. 42(1): 36−48(in Chinese with English abstract).

    Google Scholar

    [52] Zhang H F. 2009. Peridotite−melt interaction: A key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 54(19): 3417−3437. doi: 10.1007/s11434-009-0307-z

    CrossRef Google Scholar

    [53] Zhang H H, Wu. L, Li H, et al. 2022. Relation between the Emeishan mantle plume activity and Wumengshan volcanic−sedimentary Basin in Northeastern Yunnan[J]. Geoscience, 2022, 36(1): 225−243(in Chinese with English abstract).

    Google Scholar

    [54] Zhang H H, Yang Z, Li Z W, et al. 2024. Discovery of volcanic matter in the Upper Maokou Formation of the Wumengshan area : Evidence of early activity of the Emeishan mantle plume[J]. Geological Bulletin of China, 43(7): 1207−1220.

    Google Scholar

    [55] Zhang H H, Yuan Y S, Yu Y Z, et al. 2021. The response relationship between Emei mantle plume activity and volcanic sedimentary Basin in Wumengshan area of Northeast Yunnan[J]. Geoscience, 35(5): 1155−1177(in Chinese with English abstract).

    Google Scholar

    [56] Zhang K X, Pan G T, He W H, et al. 2015. New division of tectonic−strata superregion in China[J]. Earth Science—Journal of China University of Geosciences, 40(2): 206−233(in Chinese with English abstract). doi: 10.3799/dqkx.2015.016

    CrossRef Google Scholar

    [57] Zhang Y Q, Dong S W. 2019. East Asia multi−plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613−641(in Chinese with English abstract).

    Google Scholar

    [58] Zhang Y Q, Dong S W, Li J H, et al. 2011. Mesozoic multi−directional compressive tectonic action and the formation−reformation of the Sichuan Basin[J]. Geology in China, 38(2): 233−250(in Chinese with English abstract).

    Google Scholar

    [59] Zhang Z C, Wang F S, Hao Y L. 2005. Picrites in the Emeishan Large Igneous Province: Evidence for mantle plume activity[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 17−22(in Chinese with English abstract).

    Google Scholar

    [60] Zhao S J, Li S Z, Yu S, et al. 2016. Proto−Tethys ocean in East Asia(Ⅲ): Structures of ductile shear zones in the North Qinling[J]. Acta Petrologica Sinica, 32(9): 2645−2655(in Chinese with English abstract).

    Google Scholar

    [61] Zhong Y T, Roland M, Chen J, et al. 2020. Geochemical, biostratigraphic, and high−resolution geochronological constraints on the Waning stage of Emeishan large igneous province[J]. Geological Society of America bulletin, 132(9/10): 1969−1986.

    Google Scholar

    [62] Zhou J X, Chen Z Y. 2007. Research on cathodoluminescence of zircon under electron probe[M]. Chengdu: University of Electronic Science and Technology Press(in Chinese).

    Google Scholar

    [63] Zhu R X, Zhao P, Zhao Li. 2022. Tectonic evolution and geodynamics of the Neo−Tethys Ocean[J]. Scientia Sinica (Terrae), 52(1): 1−25(in Chinese with English abstract). doi: 10.1360/SSTe-2021-0147

    CrossRef Google Scholar

    [64] 钏茂山, 胡乐, 蔺如喜, 等. 2024. 扬子板块西缘早中生代 “绿豆岩” 成因及构造启示: 锆石 U−Pb 年龄、微量元素及 Hf 同位素约束[J]. 地学前缘, 31(2): 204−223.

    Google Scholar

    [65] 戴传固, 王雪华, 陈建书, 等. 2017. 中国区域地质志·贵州志 [M]. 北京: 地质出版社.

    Google Scholar

    [66] 邓晋福, 罗照华, 苏尚国, 等. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社.

    Google Scholar

    [67] 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 27(9): 2501−2509.

    Google Scholar

    [68] 董树文, 吴锡浩, 吴珍汉, 等. 2000. 论东亚大陆的构造翘变 —— 燕山运动的全球意义[J]. 地质论评, 46(1): 8−13. doi: 10.3321/j.issn:0371-5736.2000.01.002

    CrossRef Google Scholar

    [69] 董树文, 张岳桥, 陈宣华, 等. 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 29(3): 306−317. doi: 10.3321/j.issn:1006-3021.2008.03.005

    CrossRef Google Scholar

    [70] 董树文, 张岳桥, 李海龙, 等. 2019. “燕山运动” 与东亚大陆晚中生代多板块汇聚构造 —— 纪念 “燕山运动” 90 周年[J]. 中国科学: 地球科学, 49(6): 913−938.

    Google Scholar

    [71] 何斌, 徐义刚, 肖龙, 等. 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 77(2): 194−202. doi: 10.3321/j.issn:0001-5717.2003.02.007

    CrossRef Google Scholar

    [72] 何熙琦, 刘爱民, 肖加飞, 等. 2004. 1︰25 万毕节县幅区域地质调查成果报告 [R]. 贵阳: 贵州省地质调查院.

    Google Scholar

    [73] 黄诚, 丁伟品, 张宏辉, 等. 2019. 云南乌蒙山西部甸尾街、沧溪、马街、朵马戛幅 1∶5 万区域地质调查报告 [R]. 海口: 武警黄金第九支队.

    Google Scholar

    [74] 李献华, 李武显, 何斌. 2012. 华南陆块的形成与 Rodinia 超大陆聚合-裂解 —— 观察、解释与检验[J]. 矿物岩石地球化学通报, 31(6): 543−559. doi: 10.3969/j.issn.1007-2802.2012.06.002

    CrossRef Google Scholar

    [75] 刘建清, 何利, 陈风霖, 等. 2021. 滇东北盐津地区中三叠统关岭组底部绿豆岩年代学及地球化学研究[J]. 岩石学报, 37(7): 2245−2255. doi: 10.18654/1000-0569/2021.07.16

    CrossRef Google Scholar

    [76] 潘江涛, 刘红豪, 袁永盛, 等. 2022a. 上扬子西缘晚二叠世宣威组凝灰岩: 对峨眉山大火成岩省火山活动及古特提斯弧火山作用的约束[J]. 地质学报, 96(6): 1985−2000.

    Google Scholar

    [77] 潘江涛, 吴亮, 张宏辉, 等. 2022b. 云南乌蒙山区 1∶5 万瓦岗、黄葛树、大湾子、柿子坝、莲峰、大关县、火烧坝、五寨、闸上 9 幅区域地质调查报告 [R]. 昆明: 中国地质调查局昆明自然资源综合调查中心.

    Google Scholar

    [78] 魏杰. 2018. 峨眉山玄武岩岩石学、岩石地球化学及其地球动力学意义 [D]. 成都理工大学硕士学位论文: 1−69.

    Google Scholar

    [79] 徐涛, 张忠杰, 刘宝峰, 等. 2015. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹: 来自丽江-清镇宽角地震资料的约束[J]. 中国科学: 地球科学, 45(5): 561−576.

    Google Scholar

    [80] 张晗, 黄虎, 侯明才. 2020. 四川广元地区朝天剖面上二叠统吴家坪组凝灰岩成因及其地质意义[J]. 地球科学与环境学报, 42(1): 36−48.

    Google Scholar

    [81] 张宏辉, 吴亮, 李鸿, 等. 2022. 滇东北乌蒙山地区峨眉地幔柱活动与火山-沉积盆地的响应关系[J]. 现代地质, 36(1): 225−243.

    Google Scholar

    [82] 张宏辉, 杨朝, 李致伟, 等. 2024. 乌蒙山地区茅口组中上部火山物质的发现: 峨眉地幔柱早期活动的证据[J]. 地质通报, 43(7): 1207−1220.

    Google Scholar

    [83] 张宏辉, 袁永盛, 余杨忠, 等. 2021. 扬子板块西缘中生代 — 新生代碰撞造山事件的记录: 来自峨眉山玄武岩的锆石 U−Pb 同位素证据[J]. 现代地质, 35(5): 1155−1177.

    Google Scholar

    [84] 张克信, 潘桂棠, 何卫红, 等. 2015. 中国构造-地层大区划分新方案[J]. 地球科学 (中国地质大学学报), 40(2): 206−233.

    Google Scholar

    [85] 张岳桥, 董树文. 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613−641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059

    CrossRef Google Scholar

    [86] 张岳桥, 董树文, 李建华, 等. 2011. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质, 38(2): 233−250. doi: 10.3969/j.issn.1000-3657.2011.02.001

    CrossRef Google Scholar

    [87] 张招崇, 王福生, 郝艳丽. 2005. 峨眉山大火成岩省中的苦橄岩: 地幔柱活动证据[J]. 矿物岩石地球化学通报, 24(1): 17−22. doi: 10.3969/j.issn.1007-2802.2005.01.003

    CrossRef Google Scholar

    [88] 赵淑娟, 李三忠, 余珊, 等. 2016. 东亚原特提斯洋 (Ⅲ): 北秦岭韧性剪切带构造特征[J]. 岩石学报, 32(9): 2645−2655.

    Google Scholar

    [89] 周剑雄, 陈振宇. 2007. 电子探针下锆石阴极发光的研究 [M]. 成都: 电子科技大学出版社.

    Google Scholar

    [90] 朱日祥, 赵盼, 赵亮. 2021. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 52(1): 1−25.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(112) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint