2024 Vol. 43, No. 6
Article Contents

LI Yadong, MA Ming, CAI Wenyan, GAO Jilei, ZHANG Zhaolu, SUN Xiangbiao. 2024. Genesis of Yinan gold deposit in Luxi district: Constrain from REE and trace elements of sulfide ore and wall-rock. Geological Bulletin of China, 43(6): 896-913. doi: 10.12097/gbc.2022.12.019
Citation: LI Yadong, MA Ming, CAI Wenyan, GAO Jilei, ZHANG Zhaolu, SUN Xiangbiao. 2024. Genesis of Yinan gold deposit in Luxi district: Constrain from REE and trace elements of sulfide ore and wall-rock. Geological Bulletin of China, 43(6): 896-913. doi: 10.12097/gbc.2022.12.019

Genesis of Yinan gold deposit in Luxi district: Constrain from REE and trace elements of sulfide ore and wall-rock

More Information
  • The Yinan gold deposit is a representative skarn deposit in the Luxi district, mainly produced in and around the contact zone between the Early Cretaceous intermediate−acid complex and the Neoarchean and Cambrian strata. The present work traces the source of ore−forming material and geochemical properties of ore−forming fluids by using rock/ore rare earth and trace element compositions. The ore−forming diorite porphyrite does not show a negative Eu anomaly, and a large amount of magnetite is developed in the early mineralized stage, suggesting that the ore−forming fluid in the early stage is oxidized. Pyrite and chalcopyrite in the late (gold) mineralization stage are relatively enriched in light rare earth elements and high field strength elements, with significant negative Eu anomaly and insignificant Ce anomaly, and Hf/Sm and Nb/La ratios greater than 1, showing the characteristics of F−bearing reductive fluids. The Y/Ho, Zr/Hf and Nb/Ta ratios in the ore are highly variable, and the Co/Ni in the pyrite is more than 10, indicating that the ore−forming fluid originated from the mixing of magmatic water and meteoric water. The ore and the ore−bearing wall rocks have similar rare earth elements partitioning patterns and trace elements geochemical behavior, with the same range/trend of trace element ratios, suggesting that the Yi’nan complex and carbonate rocks provide the necessary ore−forming material. In summary, the mineralization process of the Yi’nan gold deposit has been well constrained, and it also has certain indicative significance for the genesis of gold deposits within the region.

  • 加载中
  • [1] Anenburg M, Mavrogenes J A, Frigo C, et al. 2020. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica[J]. Science Advances, 41(6): 2375−2548.

    Google Scholar

    [2] Ayers J C, Watson E B. 1993. Apatite/fluid partitioning of rare–earth elements and strontium: Experimental results at 1.0 GPa and 1000℃ and application to models of fluid–rock interaction[J]. Chemical Geology, 110: 299−314. doi: 10.1016/0009-2541(93)90259-L

    CrossRef Google Scholar

    [3] Bajwah Z U, Seccombe P K, Offler R. 1987. Trace element distribution Co: Ni ratios and genesis of the Big Cadia iron–copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 22: 292−300.

    Google Scholar

    [4] Bau M, Dulski P. 1995. Comparative study of yttrium and rare–earth element behaviors in fluorine–rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 119(2/3): 213−223. doi: 10.1007/BF00307282

    CrossRef Google Scholar

    [5] Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies[M]. Amsterdam: Elsevier: 63–114.

    Google Scholar

    [6] Bralia A, Sabatini G, Troja F. 1979. A revaluation of the Co/Ni ration in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14: 353−374.

    Google Scholar

    [7] Cai W Y, Zhang Z L, Liu X, et al. 2023a. Metallogeny of the Yi’nan Tongjing Au–Cu skarn deposit, Luxi district, North China Craton: Perspective from in–suit trace elements, sulfur and lead isotopes of sulfides[J]. Frontiers in Earth Science, 10: 1084212. doi: 10.3389/feart.2022.1084212

    CrossRef Google Scholar

    [8] Cai W Y, Liu X, Zhang Z L, et al. 2023b. Genesis of the Yi’nan Tongjing Gold–Copper Skarn Deposit, Luxi District, North China Craton: Evidence from Fluid Inclusions and H–O Isotopes[J]. Minerals, 13: 1348.

    Google Scholar

    [9] Campbell F A, Ethier V G. 1984. Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan orebodies[J]. Canadian Mineralogist, 22: 503−506.

    Google Scholar

    [10] Chen L, Tao W, Zhao L, et al. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton[J]. Earth and Planetary Science Letters, 267: 56−68. doi: 10.1016/j.jpgl.2007.11.024

    CrossRef Google Scholar

    [11] Cioacă M E, Munteanu M, Qi L, et al. 2014. Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: a reconnaissance study[J]. Ore Geology Reviews, 63: 22−39. doi: 10.1016/j.oregeorev.2014.04.016

    CrossRef Google Scholar

    [12] Deditius A, Chryssoulis S, Li J W, et al. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 104: 42−62. doi: 10.1016/j.gca.2012.11.006

    CrossRef Google Scholar

    [13] Deng J, Wang C, Bagas L, et al. 2018. Crustal architecture and metallogenesis in the south–eastern North China Craton[J]. Earth Science Reviews, 182: 251−272. doi: 10.1016/j.earscirev.2018.05.001

    CrossRef Google Scholar

    [14] Duan Z, Li J W. 2017. Zircon and titanite U–Pb dating of the Zhangjiawa iron skarn deposit, Luxi district, North China Craton: Implications for a craton–wide iron skarn mineralization[J]. Ore Geology Reviews, 89: 309−323. doi: 10.1016/j.oregeorev.2017.06.022

    CrossRef Google Scholar

    [15] Duan Z, Gleeson S A, Gao W S, et al. 2020. Garnet U–Pb dating of the Yinan Au–Cu skarn deposit, Luxi District, North China Craton: Implications for district–wide coeval Au–Cu and Fe skarn mineralization[J]. Ore Geology Reviews, 118: 103310. doi: 10.1016/j.oregeorev.2020.103310

    CrossRef Google Scholar

    [16] George L L, Cristian B, Massimo D, et al. 2018. Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): influence on the formation of Tl–rich sulfosalt melt[J]. Ore Geology Reviews, 102: 59−105. doi: 10.1016/j.oregeorev.2018.08.032

    CrossRef Google Scholar

    [17] Gregory D D, Large R R, Halpin J A, et al. 2015. Trace element content of sedimentary pyrite in Black Shales[J]. Economic Geology, 110: 1389−1410. doi: 10.2113/econgeo.110.6.1389

    CrossRef Google Scholar

    [18] Guo P, Santosh M, Li S R. 2013. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 24: 1172−1202. doi: 10.1016/j.gr.2013.02.004

    CrossRef Google Scholar

    [19] Guo P, Santosh M, Li S R, et al. 2014. Crustal evolution in the central part of Eastern NCC: Zircon U–Pb ages from multiple magmatic pulses in the Luxi area and implications for gold mineralization[J]. Ore Geology Reviews, 60: 126−145. doi: 10.1016/j.oregeorev.2014.01.002

    CrossRef Google Scholar

    [20] Hayashi K I, Ohmoto H. 1991. Solubility of gold in NaCl and H2S–bearing aqueous solutions at 250–350 °C[J]. Geochimica et Cosmochimica Acta, 55: 2111–2126.

    Google Scholar

    [21] Hu H B, Mao J W, Niu S Y, et al. 2006. Geology and geochemistry of telluridebearing Au deposits in the Pingyi area, western Shandong, China[J]. Mineralogy and Petrology, 87: 209−240. doi: 10.1007/s00710-006-0126-8

    CrossRef Google Scholar

    [22] Jenner F E, O'Neill H S C, Arculus R J, et al. 2010. The magnetite crisis in the evolution of arc–related magmas and the initial concentration of Au, Ag and Cu[J]. Journal of Petrology, 12: 2445−2464.

    Google Scholar

    [23] Keith M, Haase K M, Klemd R, et al. 2016. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic–hosted massive sulfide deposit, Troodos ophiolite, Cyprus[J]. Chemical Geology, 423: 7−18. doi: 10.1016/j.chemgeo.2015.12.012

    CrossRef Google Scholar

    [24] Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction zone fluids[J]. Nature, 380: 237−240. doi: 10.1038/380237a0

    CrossRef Google Scholar

    [25] Koglin N, Frimmel H E, Minter W L, et al. 2010. Trace–element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 45: 259−280. doi: 10.1007/s00126-009-0272-0

    CrossRef Google Scholar

    [26] Lan T G, Fan H R, Santosh M, et al. 2012. Early Jurassic high–K calc–alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: Implication for crust–mantle interaction and post–collisional magmatism[J]. Lithos, 140: 183−199.

    Google Scholar

    [27] Large R R, Halpin J A, Danyushevsky L V, et al. 2014. Trace element content of sedimentary pyrite as a new proxy for deep–time ocean–atmosphere evolution[J]. Earth and Planetary Science Letters, 389: 209−220. doi: 10.1016/j.jpgl.2013.12.020

    CrossRef Google Scholar

    [28] Li J, Cai W Y, Li B, et al. 2019. Paleoproterozoic SEDEX–type stratiform mineralization overprinted by Mesozoic vein–type mineralization in the Qingchengzi Pb–Zn deposit, Northeastern China[J]. Journal of Asian Earth Sciences, 184: 104009. doi: 10.1016/j.jseaes.2019.104009

    CrossRef Google Scholar

    [29] Li J, Wang K Y, Cai W Y, et al. 2020. Triassic gold–silver metallogenesis in Qingchengzi orefield, North China Craton: Perspective from fluid inclusions, REE and H–O–S–Pb isotope systematics[J]. Ore Geology Reviews, 121: 103567. doi: 10.1016/j.oregeorev.2020.103567

    CrossRef Google Scholar

    [30] Liu Y S, Zong K Q, Kelemen P B, et al. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh–pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 247(1/2): 133−153. doi: 10.1016/j.chemgeo.2007.10.016

    CrossRef Google Scholar

    [31] Liu Y, Santosh M, Li S R, et al. 2014. Stable isotope geochemistry and Re–Os ages of the Yi’nan gold deposit, Shandong Province, northeastern China[J]. International Geology Review, 6: 695−710.

    Google Scholar

    [32] Mao G Z, Hua R M, Gao J F, et al. 2009. Existing forms of REE in gold–bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China[J]. Journal of Rare Earths, 27(6): 1079−1087. doi: 10.1016/S1002-0721(08)60392-0

    CrossRef Google Scholar

    [33] Maslennikov V V, Maslennikova S P, Large R R, et al. 2009. Study of trace element zonationin vent chimneys from the Silurian Yaman–Kasy volcanic–hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation–inductively coupled plasma mass spectrometry(LA–ICPMS)[J]. Economic Geology, 104: 1111−1141. doi: 10.2113/gsecongeo.104.8.1111

    CrossRef Google Scholar

    [34] Meng Y M, Hu R Z, Huang X W, et al. 2018. The relationship between stratabound Pb–Zn–Ag and porphyry–skarn Mo mineralization in the Laochang deposit, southwestern China: constraints from pyrite Re–Os isotope, sulfur isotope, and trace element data[J]. Journal of Geochemical Exploration, 194: 218−238. doi: 10.1016/j.gexplo.2018.08.008

    CrossRef Google Scholar

    [35] Mills R, Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount, 26°N mid–Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 59(17): 3511−3524. doi: 10.1016/0016-7037(95)00224-N

    CrossRef Google Scholar

    [36] Oreskes N, Einaudi M T. 1990. Origin of rare earth element–enriched hematite breccias at the Olympic Dam Cu–U–Au–Ag deposit, Roxby Downs, South Australia[J]. Economic Geology, 85(1): 1−28. doi: 10.2113/gsecongeo.85.1.1

    CrossRef Google Scholar

    [37] Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides[J]. Acta Crystallographica Section C: Structural Chemistry, 32: 751−767.

    Google Scholar

    [38] Stefansson A, Seward T M. 2004. Gold (I) complexing in aqueous sulfide solutions to 500 °C at 500 bar[J]. Geochimica et Cosmochimica Acta, 20: 4121–4143.

    Google Scholar

    [39] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar

    [40] Vaughan D J, Rosso K M. 2006. Chemical bonding in sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61: 231−264. doi: 10.2138/rmg.2006.61.5

    CrossRef Google Scholar

    [41] Wan Y S, Liu D Y, Wang S J, et al. 2011. Similar to 2.7 Ga juvenile crust formation in the North China Craton (Taishan–Xintai area, Western Shandong Province): further evidence of an understated event from U–Pb dating and Hf isotopic composition of zircon[J]. Precambrian Research, 186: 169−180. doi: 10.1016/j.precamres.2011.01.015

    CrossRef Google Scholar

    [42] Williams–Jones A E, Bowell R J, Migdisov A A. 2009. Gold in solution[J]. Elements, 5: 281–287.

    Google Scholar

    [43] Wu M L, Zhao G C, Sun M, et al. 2013. Zircon U−Pb geochronology and Hf isotopes of major lithologies from the Yishui Terrane: implications for the crustal evolution of the Eastern Block, North China Craton[J]. Lithos, 170/171: 164–178.

    Google Scholar

    [44] Xu Y G, Ma J L, Huang X L, et al. 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton[J]. International Journal of Earth Sciences, 93: 1025−1041. doi: 10.1007/s00531-004-0430-7

    CrossRef Google Scholar

    [45] Yaxley G M, Green H, Kamenetsky V, 1998. Carbonatite metasomatism in the southeastern Australian lithosphere[J]. Journal of Petrology, 39(11/12): 1917–1930.

    Google Scholar

    [46] Zhang W, Hu Z C, Gunther D, et al. 2016. Direct lead isotope analysis in Hg–rich sulfides by LA–MC–ICP–MS with a gas exchange device and matrix–matched calibration[J]. Analytica Chimica Acta, 948: 9−18. doi: 10.1016/j.aca.2016.10.040

    CrossRef Google Scholar

    [47] Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136: 177−202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [48] 安芳, 朱永峰. 2014. 新疆西准噶尔包古图金矿微量元素地球化学研究[J]. 岩石矿物学杂志, 33(2): 329−342. doi: 10.3969/j.issn.1000-6524.2014.02.011

    CrossRef Google Scholar

    [49] 毕献武, 胡瑞忠, 彭建堂, 等. 2004. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J]. 矿物岩石地球化学通报, (1): 1−4. doi: 10.3969/j.issn.1007-2802.2004.01.001

    CrossRef Google Scholar

    [50] 丁振举, 姚书振, 刘丛强, 等. 2003. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J]. 岩石学报, 4: 792−798. doi: 10.3321/j.issn:1000-0569.2003.04.022

    CrossRef Google Scholar

    [51] 董树义. 2008. 山东沂南金矿床成因与成矿规律和成矿预测[D]. 中国地质大学(北京)博士学位论文: 1–156.

    Google Scholar

    [52] 高明波, 高继雷, 张永明, 等. 2022. 鲁西莱芜矿山岩浆杂岩体源区及成因: 地球化学、Sr–Nd–Pb及锆石Hf同位素约束[J]. 矿物岩石地球化学通报, 41(2): 287−306.

    Google Scholar

    [53] 顾雪祥, 刘丽, 董树义, 等. 2010. 山东沂南金铜铁矿床中的液态不混溶作用与成矿: 流体包裹体和氢氧同位素证据[J]. 矿床地质, 29(1): 43−57. doi: 10.3969/j.issn.0258-7106.2010.01.006

    CrossRef Google Scholar

    [54] 郭谱. 2014. 鲁西中生代金成矿的地球动力学背景研究[D]. 中国地质大学(北京)博士学位论文: 1–171.

    Google Scholar

    [55] 胡芳芳, 王永, 范宏瑞, 等. 2010. 鲁西沂南金场夕卡岩型金铜矿床矿化时代与成矿流体研究[J]. 岩石学报, 26(5): 1503−1511.

    Google Scholar

    [56] 李洪奎, 耿科, 李逸凡, 等. 2011. 沂南县铜井金矿床锆石SHRIMP U–Pb年龄及其地质意义[J]. 矿床地质, 30(3): 497−503. doi: 10.3969/j.issn.0258-7106.2011.03.011

    CrossRef Google Scholar

    [57] 李健, 宋明春, 于建涛, 等. 2022. 胶东东部金青顶金矿床成因: 硫化物矿石与围岩微量元素的制约[J]. 地质通报, 41(6): 1010−1022.

    Google Scholar

    [58] 李科. 2009. 山东沂南金铜铁矿床同位素地球化学研究[D]. 中国地质大学(北京)硕士学位论文: 1–57.

    Google Scholar

    [59] 刘丽. 2009. 山东沂南金矿床成矿流体特征及地质意义[D]. 中国地质大学(北京)硕士学位论文: 1–61.

    Google Scholar

    [60] 马玉波, 杜晓慧, 张增杰, 等. 2013. 青城子层状/脉状铅锌矿床稀土元素地球化学特征及地质意义[J]. 矿床地质, 32(6): 1236−1248. doi: 10.3969/j.issn.0258-7106.2013.06.010

    CrossRef Google Scholar

    [61] 毛光周, 华仁民, 高剑峰, 等. 2006. 江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J]. 矿床地质, 25(4): 412−426. doi: 10.3969/j.issn.0258-7106.2006.04.006

    CrossRef Google Scholar

    [62] 牛树银, 胡华斌, 毛景文, 等. 2004. 鲁西地区地质构造特征及其形成机制[J]. 中国地质, 31(1): 34−39. doi: 10.3969/j.issn.1000-3657.2004.01.004

    CrossRef Google Scholar

    [63] 钱建平, 常德才, 徐磊, 等. 2017. 山东沂南金矿田成矿构造系统和构造控矿规律[J]. 大地构造与成矿学, 41(1): 77−90.

    Google Scholar

    [64] 邱检生, 王德滋, 任启江. 1996. 山东沂南金场夕卡岩型金铜矿床地质地球化学特征及矿床成因[J]. 矿床地质, 15(4): 330−340.

    Google Scholar

    [65] 宋明春, 李洪奎. 2001. 山东省区域地质构造演化探讨[J]. 山东地质, 17(6): 12−21.

    Google Scholar

    [66] 陶涛. 2009. 山东沂南金矿床含矿杂岩体岩石学与地球化学研究[D]. 中国地质大学(北京)硕士学位论文: 1–62.

    Google Scholar

    [67] 田京祥, 李秀章, 宋志勇, 等. 2015. 鲁西中生代金矿形成时代、物质来源及问题讨论[J]. 地质学报, 89(8): 1530−1537. doi: 10.3969/j.issn.0001-5717.2015.08.013

    CrossRef Google Scholar

    [68] 王永, 范宏瑞, 胡芳芳, 等. 2011. 鲁西沂南铜井闪长质岩体锆石U–Pb年龄、元素及同位素地球化学特征[J]. 岩石矿物学杂志, 30(4): 553−566. doi: 10.3969/j.issn.1000-6524.2011.04.001

    CrossRef Google Scholar

    [69] 王永. 2010. 鲁西南地区晚中生代岩浆活动与金铜矿成矿作用[D]. 中国科学院博士学位论文: 1–199.

    Google Scholar

    [70] 徐义刚, 巫祥阳, 罗振宇,等. 2007. 山东中侏罗世–早白垩世侵入岩的锆石Hf同位素组成及其意义[J]. 岩石学报, 23(2): 307−316. doi: 10.3969/j.issn.1000-0569.2007.02.011

    CrossRef Google Scholar

    [71] 杨承海, 许文良, 杨德彬, 等. 2006. 鲁西中生代高Mg闪长岩的成因: 年代学与岩石地球化学证据[J]. 地球科学, 31(1): 81−92. doi: 10.3321/j.issn:1000-2383.2006.01.011

    CrossRef Google Scholar

    [72] 杨承海, 许文良, 杨德彬, 等. 2008. 鲁西上峪辉长–闪长岩的成因: 年代学与岩石地球化学证据[J]. 中国科学(D辑: 地球科学), 1(1): 44−55.

    Google Scholar

    [73] 赵葵东. 2005. 华南两类不同成因锡矿床同位素地球化学及成矿机理研究——以广西大厂和湖南芙蓉锡矿为例[D]. 南京大学博士学位论文: 39–51.

    Google Scholar

    [74] 祝德成, 田瑞聪, 田京祥, 等. 2018. 鲁西地区矽卡岩型铜金矿He–Ar同位素测定及其地质意义——以沂南地区铜井式铜金矿为例[J]. 山东国土资源, 34(8): 1−5. doi: 10.3969/j.issn.1672-6979.2018.08.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(417) PDF downloads(151) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint