2024 Vol. 43, No. 7
Article Contents

LIU Guanglian, WANG Zhouxin, ZHANG Daming, ZHANG Yong, LIU Zhigang, MA Zhongyuan. 2024. Age, geochemistry and formation environment of diorite porphyrite in Kudeerte gold-polymetallic deposit, East Kunlun. Geological Bulletin of China, 43(7): 1133-1148. doi: 10.12097/gbc.2022.10.027
Citation: LIU Guanglian, WANG Zhouxin, ZHANG Daming, ZHANG Yong, LIU Zhigang, MA Zhongyuan. 2024. Age, geochemistry and formation environment of diorite porphyrite in Kudeerte gold-polymetallic deposit, East Kunlun. Geological Bulletin of China, 43(7): 1133-1148. doi: 10.12097/gbc.2022.10.027

Age, geochemistry and formation environment of diorite porphyrite in Kudeerte gold-polymetallic deposit, East Kunlun

  • In order to determine the metallogenic age and tectonic environment of the Kudeerte gold−polymetallic deposit in Kaerqueka ore field, this work studies on zircon U−Pb isotopic dating and whole rock geochemical analysis of diorite porphyrite. The results indicated that the zircon U−Pb weighted average age of diorite porphyrite is 232.6±1 Ma(MSWD=0.17), which is slightly later than the granodiorite age (244~234.1 Ma) and Ar−Ar plateau age(236.7±4.0 Ma) of gold mineralization sericite, limiting the upper age of gold mineralization to no later than 233 Ma. The dioritie porphyrite has SiO2 ranges from 54.96% to 55.57%, rich in Al(17.94% to 18.07%, Al2O3), and high in Sr (455×10−6~505×10−6), low Y (19.2×10−6~26.4×10−6) and Yb (2.18×10−6~2.95×10−6). A/CNK ratios range from 0.87 to 0.89, and belong to high potassium calc−alkaline sub−aluminum series. The fractionation of light and high rare earth elements (LREEs and HREEs) is obvious, and the LREEs are enriched. The LREE/HREE ratios range from 6.24 to 8.69, and the (La/Yb)N ratios from 7.25 to 10.36, and the Eu is medium deficit. Enrichment of large−ion lithophile elements (LILEs), such as Rb, Th, U, K, etc., and depletion of high−field strength elements (HFSEs), such as Nb, Ta, P and Ti. It has high Sr/Yb ratios of 154.24 to 216.74, Sr/Y ratios of 17.23 to 24.27, Nb/Ta ratios of 17.79 to 20.05, Mg# values of 49.35 to 50.18, and Rb/Sr ratios of 0.27 to 0.3, in the range of 0.05 to 0.5. Based on the regional geological background and metallogenic characteristics, it is believed that the diorite porphyrite was formed in the partial melting of the mesoproterozoic lower crust during the subduction−collision transition tectonic stage of mantle source magma, and the East Kunlun area was in an extended environment influenced by subduction plate fragmentation during the Middle−Late Triassic subduction−collision transition, which is obviously different from the typical compressional orogenic belt. The strong crust−mantle interaction promotes the concentrated production of deposits in the area.

  • 加载中
  • [1] Alther R, Holl A, Hegner E, et al. 2000. High−potassium, calc−alkaline I−type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50: 51−73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    [2] Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameter[J]. Chemical Geology, 48: 43−55. doi: 10.1016/0009-2541(85)90034-8

    CrossRef Google Scholar

    [3] Collins W J. 1982. Nature and origin of A type granites with paticular reference to Southeastern Australia[J]. Miner Petro, 80: 189−200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [4] Defant M J, Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662−665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [5] Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms [M]. Oxford: Blackwell.

    Google Scholar

    [6] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard [J]. Chemical Geology, 257(1/2): 34−43.

    Google Scholar

    [7] Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China orogen: U−Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths [J]. Journal of Petrology, 51(1/2): 537−571.

    Google Scholar

    [8] Ludwig K R. 2003. User’s manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft excel [M]. Berkely Geochronology Center, (4): 1−71.

    Google Scholar

    [9] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite−trondhjemite−granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79: 1−24. doi: 10.1016/j.lithos.2004.04.048

    CrossRef Google Scholar

    [10] Münker C, Wörner G, Yogodzinski G, et al. 2004. Behaviour of high field strength elements in subduction zones: Constraints from Kamchatka−Aleutian arc lavas[J]. Earth and Planetary Science Letters, 224(3/4): 275−293.

    Google Scholar

    [11] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [12] Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8−32kbar: Implications for continental growth and crust−mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [13] Richter F M. 1989. Simple models for trace element fractionation duringmelt segregateon[J]. Earth and Planetary Science Letters, 77(3/4): 333−344.

    Google Scholar

    [14] Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotiteand phengite: Implications for the “missing Nb paradox”[J]. Geology, 41(3): 303−306. doi: 10.1130/G33781.1

    CrossRef Google Scholar

    [15] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313−345.

    Google Scholar

    [16] Taylor S R, McLennan S M. 1981. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society A, 301: 381−399.

    Google Scholar

    [17] Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[M]. London: Blackwell Scientific Publication, 312.

    Google Scholar

    [18] Tischendorf G. 1986. Classification of grantioids[J]. Abroad Geological Science and Technology, 7: 25−33.

    Google Scholar

    [19] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [20] Zhang J Y, Ma C Q, Li J W, et al. 2017. A possible genetic relationship between orogenic gold mineralization and post−collisional magmatism in the eastern Kunlun Orogen, western China[J]. Ore Geology Reviews, 81(1): 342−357.

    Google Scholar

    [21] 陈柏林. 2019. 东昆仑五龙沟金矿田地质特征与成矿地质体厘定[J]. 地质学报, 93(1): 179−196. doi: 10.3969/j.issn.0001-5717.2019.01.011

    CrossRef Google Scholar

    [22] 陈国超, 裴先治, 李瑞保, 等. 2018. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例[J]. 岩石学报, 34(8): 2441−2480.

    Google Scholar

    [23] 陈国超, 裴先治, 李瑞保, 等. 2020. 东昆仑造山带东段晚古生代−早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 27(4): 33−48.

    Google Scholar

    [24] 陈加杰. 2018. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [25] 邓晋福, 罗照华, 苏尚国, 等. 2004. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社.

    Google Scholar

    [26] 邓晋福, 刘翠, 冯艳芳, 等. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类[J]. 中国地质, 37(4): 1112−1118.

    Google Scholar

    [27] 邓晋福, 刘翠, 狄永军, 等. 2018. 英云闪长岩−奥长花岗岩−花岗闪长岩(TTG)岩石构造组合及其亚类划分[J]. 地学前缘, 25(6): 42−50.

    Google Scholar

    [28] 丰成友, 李东生, 吴正寿, 等. 2009a. 青海东昆仑成矿带斑岩型矿床的确认及找矿前景分析[J]. 矿物学报, 29(S1): 171−172.

    Google Scholar

    [29] 丰成友, 李东生, 屈文俊, 等. 2009b. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼–锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 223−227.

    Google Scholar

    [30] 丰成友, 李东生, 吴正寿, 等. 2010. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, (4): 10−17. doi: 10.3969/j.issn.1009-6248.2010.04.002

    CrossRef Google Scholar

    [31] 丰成友, 王雪萍, 舒晓峰, 等. 2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 41(6): 1806−1817.

    Google Scholar

    [32] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678.

    Google Scholar

    [33] 高永宝, 李文渊, 马晓光, 等. 2012. 东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J]. 兰州大学学报(自然科学版), 48(2): 36−47.

    Google Scholar

    [34] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    Google Scholar

    [35] 高永宝, 李侃, 钱兵, 等. 2015. 东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因: 锆石U−Pb年龄、岩石地球化学及Sr−Nd−Hf同位素证据[J]. 中国地质, 42(3): 646−662. doi: 10.3969/j.issn.1000-3657.2015.03.018

    CrossRef Google Scholar

    [36] 高永宝, 李侃, 钱兵, 等. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re−Os和金云母Ar−Ar同位素定年约束[J]. 大地构造与成矿学, 42(1): 96−107.

    Google Scholar

    [37] 郭通珍, 谈生祥, 常革红, 等. 2012. 祁漫塔格韧性剪切带中绢云母40Ar−39Ar定年及地质意义[J]. 西北地质, 45(1): 94−101. doi: 10.3969/j.issn.1009-6248.2012.01.013

    CrossRef Google Scholar

    [38] 郝娜娜, 袁万明, 张爱奎, 等. 2014. 东昆仑祁漫塔格晚志留世—早泥盆世花岗岩: 年代学、地球化学及形成环境[J]. 地质论评, 60(1): 201−215.

    Google Scholar

    [39] 江万, 杨兴科, 姚磊, 等. 2015. 青海祁漫塔格地区矿田构造调查报告[R].

    Google Scholar

    [40] 寇林林, 张森, 钟康惠, 等. 2015. 东昆仑五龙沟金矿矿集区韧性剪切带构造变形特点研究[J]. 中国地质, 42(2): 495−503. doi: 10.3969/j.issn.1000-3657.2015.02.010

    CrossRef Google Scholar

    [41] 李洪普, 曹永亮, 关有国, 等. 2009. 青海东昆仑山四角羊地区铁多金属矿床的成矿地质特征[J]. 地质通报, 28(6): 787−793. doi: 10.3969/j.issn.1671-2552.2009.06.014

    CrossRef Google Scholar

    [42] 李厚民, 沈远超, 钱壮志, 等. 2003. 东昆仑−南祁连富砷金矿与矿区岩浆岩的关系[J]. 吉林大学学报(地球科学版), (1): 26−31.

    Google Scholar

    [43] 李金超. 2017. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 长安大学博士学位论文.

    Google Scholar

    [44] 李瑞保, 裴先治, 李佐臣, 等. 2012. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 19(5): 244−254.

    Google Scholar

    [45] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, (7): 949−955. doi: 10.3321/j.issn:0001-5717.2008.07.013

    CrossRef Google Scholar

    [46] 李世金, 孙丰月, 高永旺, 等. 2012. 小岩体成大矿理论指导与实践: 青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    CrossRef Google Scholar

    [47] 李文渊, 张照伟, 王亚磊, 等. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用[J]. 地球科学与环境学报, 44(1): 1−19.

    Google Scholar

    [48] 刘成东, 莫宣学, 罗照华, 等. 2004. 东昆仑壳−幔岩浆混合作用: 来自锆石SHRIMP 年代学的证据[J]. 科学通报, 49(6): 596−602. doi: 10.3321/j.issn:0023-074X.2004.06.018

    CrossRef Google Scholar

    [49] 刘光莲, 张爱奎. 2015. 地球科学发展趋势的思考——以地球动力学和超大型矿床形成机制为例[J]. 科技导报, 33(11): 114−119.

    Google Scholar

    [50] 刘光莲, 刘宇宏, 朱传宝, 等. 2019. 青海东昆仑西段野马泉铁多金属矿床成矿模式及找矿模型[J]. 矿产勘查, 10(9): 2162−2170. doi: 10.3969/j.issn.1674-7801.2019.09.005

    CrossRef Google Scholar

    [51] 刘建楠, 丰成友, 何书跃, 等. 2017. 青海野马泉铁锌矿床二长花岗岩锆石U−Pb和金云母Ar−Ar测年及地质意义[J]. 大地构造与成矿学, 41(6): 1158−1170.

    Google Scholar

    [52] 刘智刚, 张爱奎, 夏友河, 等. 2017. 青海祁漫塔格那西郭勒BIF型铁矿床特征及意义[J]. 地质通报, 36(10): 1841−1849. doi: 10.3969/j.issn.1671-2552.2017.10.015

    CrossRef Google Scholar

    [53] 罗照华, 柯珊, 曹永清, 等. 2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 21(6): 292−297. doi: 10.3969/j.issn.1671-2552.2002.06.003

    CrossRef Google Scholar

    [54] 马鸿文. 1992. 花岗岩成因类型的判别分析[J]. 岩石学报, 8(4): 341−350. doi: 10.3321/j.issn:1000-0569.1992.04.005

    CrossRef Google Scholar

    [55] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    [56] 南卡俄吾, 贾群子, 李文渊, 等. 2014. 青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA−ICP−MS锆石U−Pb年龄和岩石地球化学特征[J]. 地质通报, 229(6): 841−849. doi: 10.3969/j.issn.1671-2552.2014.06.007

    CrossRef Google Scholar

    [57] 南卡俄吾, 贾群子, 唐玲, 等. 2015. 青海东昆仑哈西亚图矿区花岗闪长岩锆石U−Pb年龄与岩石地球化学特征[J]. 中国地质, 42(3): 702−712. doi: 10.3969/j.issn.1000-3657.2015.03.022

    CrossRef Google Scholar

    [58] 牛耀林. 2005. 玄武岩浆起源和演化的一些基本概念以及对中国东部中‒新生代基性火山岩成因的新思路[J]. 高校地质学报, 11(1): 9−46. doi: 10.3969/j.issn.1006-7493.2005.01.002

    CrossRef Google Scholar

    [59] 潘彤, 王秉璋, 张爱奎. 2019. 柴达木盆地南北缘成矿系列及找矿预测[M]. 武汉: 中国地质大学出版社: 11−174.

    Google Scholar

    [60] 青海省第三地质矿产勘查院. 2017. 青海省格尔木市卡而却卡地区铜多金属矿整装勘查区找矿部署研究报告[R].

    Google Scholar

    [61] 青海省第三地质勘查院. 2022. 青海省茫崖市乌兰乌珠尔—十字嵩地区锡多金属矿普查工作总结[R].

    Google Scholar

    [62] 佘宏全, 张德全, 景向阳, 等. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质, 34(2): 306−314. doi: 10.3969/j.issn.1000-3657.2007.02.013

    CrossRef Google Scholar

    [63] 时超, 李荣社, 何世平, 等. 2017. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U−Pb年龄证据[J]. 地质通报, 36(6): 977−986. doi: 10.3969/j.issn.1671-2552.2017.06.010

    CrossRef Google Scholar

    [64] 田承盛, 丰成友, 李军红, 等. 2013. 青海它温查汉铁多金属矿床40Ar−39Ar年代学研究及意义[J]. 矿床地质, 32(1): 169−176. doi: 10.3969/j.issn.0258-7106.2013.01.012

    CrossRef Google Scholar

    [65] 王秉璋, 罗照华, 吴正寿, 等. 2014a. 祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[M]. 北京: 地质出版社: 1−224.

    Google Scholar

    [66] 王秉璋, 陈静, 罗照华, 等. 2014b. 东昆仑祁漫塔格东段晚二叠世—早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J]. 岩石学报, 30(11): 3213−3228.

    Google Scholar

    [67] 王秉璋, 付长垒, 潘彤, 等. 2022. 柴北缘赛什腾地区早古生代岩浆活动与构造演化[J]. 岩石学报, 38(9): 2723−2742. doi: 10.18654/1000.0569/2022.09.13

    CrossRef Google Scholar

    [68] 王金宏, 陈家浩, 吴华英, 等. 2022. 东昆仑拉陵灶火矽卡岩型铜多金属矿床矿物学特征及其地质意义[J]. 地质与勘探, 58(4): 728−739. doi: 10.12134/j.dzykt.2022.04.003

    CrossRef Google Scholar

    [69] 王松, 丰成友, 李世金, 等. 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMPU−Pb测年及其地质意义[J]. 中国地质, 36(1): 74−84. doi: 10.3969/j.issn.1000-3657.2009.01.005

    CrossRef Google Scholar

    [70] 王新雨, 祝新友, 李加多, 等. 2021. 青海牛苦头矿区两期岩浆岩及其矽卡岩型成矿作用[J]. 岩石学报, 37(5): 1567−1586. doi: 10.18654/1000-0569/2021.05.14

    CrossRef Google Scholar

    [71] 吴祥珂, 孟繁聪, 许虹, 等. 2011. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及 Nd−Hf 同位素组成[J]. 岩石学报, 27(11): 3380−3394.

    Google Scholar

    [72] 肖晔, 丰成友, 刘建楠, 等. 2013. 青海肯德可克铁多金属矿区年代学及硫同位素特征[J]. 矿床地质, 32(1): 177−186. doi: 10.3969/j.issn.0258-7106.2013.01.013

    CrossRef Google Scholar

    [73] 许庆林, 孙丰月, 李碧乐, 等. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J]. 大地构造与成矿学, 38(2): 421−433.

    Google Scholar

    [74] 闫佳铭. 2017. 青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.

    Google Scholar

    [75] 杨涛, 李智明, 张乐, 等. 2017. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 23(4): 452−464.

    Google Scholar

    [76] 姚磊, 李永胜, 刘鹏, 等. 2013. 青海祁漫塔格地区三叠纪矽卡岩型多金属矿床研究进展[J]. 矿物学报, 33(S2): 529−530.

    Google Scholar

    [77] 姚磊. 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 中国地质大学(北京)博士学位论文: 1−185.

    Google Scholar

    [78] 于娟, 易立文, 谢炳庚, 等. 2020. 青海卡而却卡铜多金属矿床矿石矿物化学成分特征研究[J]. 地质学报, 94(12): 3776−3791. doi: 10.3969/j.issn.0001-5717.2020.12.017

    CrossRef Google Scholar

    [79] 于淼, 丰成友, 赵一鸣, 等. 2014. 青海卡而却卡铜多金属矿床流体包裹体地球化学及成因意义[J]. 地质学报, 88(5): 903−917.

    Google Scholar

    [80] 于淼, 丰成友, 刘洪川, 等. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报, 89(3): 510−521.

    Google Scholar

    [81] 袁万明, 莫宣学, 喻学惠, 等. 2000. 东昆仑热液金成矿带及其找矿方向[J]. 地质与勘探, 36(5): 20−23. doi: 10.3969/j.issn.0495-5331.2000.05.005

    CrossRef Google Scholar

    [82] 张爱奎, 莫宣学, 李云平, 等. 2010. 青海西部祁漫塔格成矿带找矿新进展及其意义[J]. 地质通报, 29(7): 1062−1074. doi: 10.3969/j.issn.1671-2552.2010.07.013

    CrossRef Google Scholar

    [83] 张爱奎, 刘光莲, 莫宣学, 等. 2012. 青海祁漫塔格晚古生代—早中生代侵入岩构造背景与成矿关系[J]. 西北地质, (1): 9−19. doi: 10.3969/j.issn.1009-6248.2012.01.003

    CrossRef Google Scholar

    [84] 张爱奎, 刘光莲, 丰成友, 等. 2013. 青海虎头崖多金属矿床地球化学特征及成矿−控矿因素研究[J]. 矿床地质, 32(1): 94−108. doi: 10.3969/j.issn.0258-7106.2013.01.006

    CrossRef Google Scholar

    [85] 张爱奎, 莫宣学, 袁万明, 等. 2016. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 36(2): 157−173.

    Google Scholar

    [86] 张爱奎, 李东生, 何书跃, 等. 2017. 青海省祁漫塔格地区主要矿产成矿规律与成矿系列[M]. 北京: 地质出版社: 13−264.

    Google Scholar

    [87] 张爱奎. 2017. 青海省祁漫塔格地区主要矿产成矿规律研究报告[R].

    Google Scholar

    [88] 张爱奎, 刘智刚, 张大明, 等. 2020. 青海祁漫塔格楚阿克拉千隐爆角砾岩型铅锌矿床成矿模式及发现意义[J]. 地质通报, 39(2/3): 319−329.

    Google Scholar

    [89] 张爱奎, 莫宣学, 张勇, 等. 2021. 东昆仑西段库德尔特金多金属矿床成因探讨[J]. 中国有色金属学报, 31(12): 3762−3778.

    Google Scholar

    [90] 张爱奎, 刘智刚, 孙非非, 等. 2022. 东昆仑西段金矿成矿系统与找矿预测[M]. 北京: 地质出版社.

    Google Scholar

    [91] 张大明, 张爱奎, 屈光菊, 等. 2020. 东昆仑西段卡而却卡铁铜多金属矿床成矿模式及找矿模型[J]. 西北地质, 53(1): 91−106.

    Google Scholar

    [92] 张德全, 党兴彦, 佘宏全, 等. 2005. 柴北缘—东昆仑地区造山型金矿床的Ar−Ar测年及其地质意义[J]. 矿床地质, 24(2): 87−98. doi: 10.3969/j.issn.0258-7106.2005.02.001

    CrossRef Google Scholar

    [93] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 138(4): 621−626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    [94] 张圆圆, 易立文, 谢炳庚, 等. 2022. 青海虎头崖铅锌多金属矿床原位硫、铅同位素组成及成矿物质来源探讨[J]. 矿物岩石地球化学通报, 41(1): 156−165.

    Google Scholar

    [95] 张照伟, 谭文娟, 王小红, 等. 2022. 西北地质调查与战略性矿产找矿勘查[J]. 西北地质, 55(3): 44−63.

    Google Scholar

    [96] 赵财胜, 杨富全, 代军治. 2006. 青海东昆仑肯德可克钴铋金矿床成矿年龄及其意义[J]. 矿床地质, (25): 427−430.

    Google Scholar

    [97] 赵一鸣, 丰成友, 李大新, 等. 2013. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 32(1): 1−19. doi: 10.3969/j.issn.0258-7106.2013.01.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(938) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint