2024 Vol. 43, No. 2~3
Article Contents

WANG Fan, ZHENG Mianping, LI Xiaoya, SHANG Pengqiang, DENG Xiaolin, WEI Zhao, WANG Zhanwen, LIANG Heng. 2024. Genetic relations between Paleogene high bromine rock salt and sylvite in west of Kuqa depression in Xinjiang. Geological Bulletin of China, 43(2~3): 206-221. doi: 10.12097/gbc.2022.09.009
Citation: WANG Fan, ZHENG Mianping, LI Xiaoya, SHANG Pengqiang, DENG Xiaolin, WEI Zhao, WANG Zhanwen, LIANG Heng. 2024. Genetic relations between Paleogene high bromine rock salt and sylvite in west of Kuqa depression in Xinjiang. Geological Bulletin of China, 43(2~3): 206-221. doi: 10.12097/gbc.2022.09.009

Genetic relations between Paleogene high bromine rock salt and sylvite in west of Kuqa depression in Xinjiang

More Information
  • The characteristics of high potassium and low bromine in the south, and high bromine and low potassium in the north of the rock salt layers west of Kuqa depression, which is contradicted against the normal evolvement of brine. The purpose of this paper is to explore the genetic relationship between the high bromine rock salt and sylvite in the west Kuqa depression and to guide the prediction of potassium resources. In this paper, the study on stratigraphic correlation, the transgression process of Kuqa depression and the analysis of strontium and sulfur isotope show that the the formation of high bromine rock salt in drill Keshen-208 is earlier than sylvite in drill Yangta-4. Study on protogenetic rock salt cutting inclusion features, inclusion homogenization temperature, main and trace elements, strontium and sulfur isotope characteristics and tectonic background analysis shows that the evolution of drill Yangta-4 was independent and closed in the secondary depression and the brine in the formation stage of high bromine rock salt of drill Keshen-208 was closer to the seawater and evolved in the secondary depression for a long time. The late second salt forming stage of drill Keshen-208 accepted more land-based water, which was in response to the brine evolution stage in the regression period. In general, after entering the Kuqa depression from west to East in the Paleogene, the seawater first went to the north area and then to the south. Yangta area is located at the end of the transgression, which is a terminal secondary depression with shallower brine and long-term closure, becoming the most favorable potassium formation area. At the regression stage, the residual brine converges in the regression channel. At this time, the local depression in the channel (such as the late salt forming stage in Keshen area) is an important favorable area for potassium formation. The Paleogene potash formation in the western section of Kuqa depression generally follows the model of "forming potassium closing the transgressive end and forming potassium in the regression channel depression", which provides a new important idea for the search for potash resources in Kuqa depression.

  • 加载中
  • [1] Benison K C, Goldstein R H. 1999. Permian paleoclimate data from fluid inclusions in halite[J]. Chemical Geology, 154(1/4): 113−132.

    Google Scholar

    [2] Bloch M R, Schnreb J. 1953. On the Cl/Br ratio and the distribution of brions in liquids and solids during evaporation of bromide−containing chloride solutions[J]. Bull. Res. Council Isr. , (3): 151−158.

    Google Scholar

    [3] Cao Y T, Liu C L, Jiao P C, et al. 2014. Spatial distribution of halite in Kuqa basin from Paleogene to Neogene and signification of potash survey[J]. Acta Geologica Sinica (English Edition), 88(1): 203−203.

    Google Scholar

    [4] Deng X L, Wei Z, Zhao Y H, et al. 2014. Formation mechanism of potash deposits in the Kuqa depression and their prediction[J]. Acta Geologica Sinica (English Edition), 88(1): 208−210.

    Google Scholar

    [5] Ding T, Valkiers S, Kipphardt H, et al. 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and VCDT with a reassessment of the atomic weight of sulfur[J]. Geochimica et Cosmochimica Acta, 65: 2433−2437. doi: 10.1016/S0016-7037(01)00611-1

    CrossRef Google Scholar

    [6] Fietzke J, Eisenhauer A. 2006. Determination of temperature dependent stable strontium isotope(88Sr/86Sr) fractionation via bracketing standard MC−ICP−MS[J]. Geochemistry Geophysics Geosystems, 7: Q08009.

    Google Scholar

    [7] Granham S A, Hendrix S M, Wang L B, et al. 1993. Collisional successor basin of western China: Impact of tectonic inheritance on sand composition[J]. Geol. Soc. Amer. Bull., 105: 323−344. doi: 10.1130/0016-7606(1993)105<0323:CSBOWC>2.3.CO;2

    CrossRef Google Scholar

    [8] Grassineau N, Mattey D, Lowry D. 2001. Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow−isotope ratio mass spectrometry[J]. Analytical Chemistry, 73: 220−225. doi: 10.1021/ac000550f

    CrossRef Google Scholar

    [9] Holland H D, Lazar B, McCaffrey M. 1986. Evolution of the atmosphere and oceans[J]. Nature, 320(6057): 27−33. doi: 10.1038/320027a0

    CrossRef Google Scholar

    [10] Lowenstein T K, Spencer R J, Pengxi Z. 1989. Origin of ancient potash evaporites: Clues from the modem nonmarine Qaidam Basin of western China[J]. Science, 245(4922): 1090−1092. doi: 10.1126/science.245.4922.1090

    CrossRef Google Scholar

    [11] Mccaffrey M A, Lazar B, Holland H D. 1987. The evaporation path of seawater and the coprecipitation of Br and K+ with halite[J]. Journal of Sedimentary Petrology, 57: 928−937.

    Google Scholar

    [12] Oberhansli H, Hsu K J. 1986. Paleocence−Eocene paleoceanography[J]. Geodynamics Series, 15: 85−100.

    Google Scholar

    [13] Wang S L, Zheng M P, Liu X F, et al. 2013. Distribution of Cambrian salt−bearing basins in China and its significance for halite and potash finding[J]. Journal of Earth Science, 24(2): 212−233. doi: 10.1007/s12583-013-0319-0

    CrossRef Google Scholar

    [14] Wei Z, Deng X L, Zhao Y H, et al. 2014. Discovery of potassium−bearing cutting from the well Yangta 4 in the Kuqa depression and seam division[J]. Acta Geologica Sinica (English Edition), 88(1): 265−266.

    Google Scholar

    [15] 陈栩琦, 曾振, 于慧敏, 等. 2021. 高精度稳定锶同位素分析方法综述[J]. 高校地质学报, 27(3): 2264−274.

    Google Scholar

    [16] 程怀德, 马海州, 谭红兵, 等. 2008. 钾盐矿床中Br的地球化学特征及研究进展[J]. 矿物岩石地球化学通报, 27(4): 399−408. doi: 10.3969/j.issn.1007-2802.2008.04.011

    CrossRef Google Scholar

    [17] 邓小林, 韦钊, 赵玉海, 等. 2002. 塔里木盆地古近纪钾盐矿层的发现及其意义[J]. 矿物学报, 2013,33(S2): 755−756.

    Google Scholar

    [18] 地质矿产部科学技术司实验管理处. 1994. 岩石和矿石分析规程 (第二分册)[M]. 西安: 陕西科学技术出版社: 270−299.

    Google Scholar

    [19] 郭宪璞, 丁孝忠, 何希贤, 等. 2002. 塔里木盆地中新生代海侵和海相地层研究的新进展[J]. 地质学报, 76(3): 299−307. doi: 10.3321/j.issn:0001-5717.2002.03.002

    CrossRef Google Scholar

    [20] 韩宁宁. 2007. 库车盆地古近系—新近系蒸发岩特征及其与古环境的关系[D]. 中国地质大学(北京)硕士学位论文: 10−60.

    Google Scholar

    [21] 郝诒纯, 曾学鲁, 李汉敏. 1982. 塔里木盆地西部晚白垩世—第三纪地层及有孔虫[J]. 地球科学, 地层古生物专辑(Ⅰ): 1−161.

    Google Scholar

    [22] 郝诒纯, 苏新, 郭宪璞, 等. 2000. 塔北库车前陆盆地晚白垩世钙质超微化石的首次发现[J]. 现代地质, 14(3): 246−392. doi: 10.3969/j.issn.1000-8527.2000.03.024

    CrossRef Google Scholar

    [23] 胡兰英. 1982. 塔里木盆地晚第三纪有孔虫古生态及地质意义[J]. 科学通报, 15: 938−941.

    Google Scholar

    [24] 胡鹏, 闫秋实, 赖万昌. 2012. 库车盆地岩盐及卤水地球化学特征及成矿远景分析[J]. 四川有色金属, 4: 38−42. doi: 10.3969/j.issn.1006-4079.2012.03.008

    CrossRef Google Scholar

    [25] 贾承造, 张师本, 吴绍祖, 等. 2004. 塔里木盆地及周边地层[M]. 北京: 科学出版社: 21−85.

    Google Scholar

    [26] 李荣西, 魏家庸, 杨卫东, 等. 2000. 用87Sr/86Sr研究海平面变化与全球对比问题[J]. 地球科学进展, 15(6): 729−733. doi: 10.3321/j.issn:1001-8166.2000.06.019

    CrossRef Google Scholar

    [27] 刘成林, 曹养同, 杨海军, 等. 2013. 库车前陆盆地古近纪—新近纪盐湖环境变迁及其成钾效应探讨[J]. 地球学报, 34(5): 547−558. doi: 10.3975/cagsb.2013.05.05

    CrossRef Google Scholar

    [28] 刘群, 陈郁华, 李银彩. 1987. 中国中、新生代陆源碎屑-化学盐型盐类沉积[M]. 北京: 科学技术出版社: 30−131.

    Google Scholar

    [29] 刘英俊, 曹励明, 李兆麟, 等. 1984. 元素地球化学[M]. 北京: 科学出版社: 496−501.

    Google Scholar

    [30] 马万栋, 马海州. 2008. 塔里木盆地地质环境演化及钾矿寻找研究进展[J]. 西北地质, 41(2): 63−72. doi: 10.3969/j.issn.1009-6248.2008.02.007

    CrossRef Google Scholar

    [31] 孟凡巍, 刘成林, 倪培. 2012. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨[J]. 微体古生物学报, 29(1): 62−69.

    Google Scholar

    [32] 苗忠英, 郑绵平, 张雪飞, 等. 2019. 蒸发岩中硫同位素的地球化学特征及其沉积学意义——以思茅盆地MZK-3井为例[J]. 地质学报, 93(5): 1166−1179. doi: 10.3969/j.issn.0001-5717.2019.05.013

    CrossRef Google Scholar

    [33] 邱芳强, 丁勇, 王辉. 2000. 库车盆地的沉积物源分析[J]. 新疆地质, 18(3): 252−257. doi: 10.3969/j.issn.1000-8845.2000.03.008

    CrossRef Google Scholar

    [34] 曲懿华. 1997. 试论盐系中泥砾岩成因[J]. 化工矿产地质, 19(3): 162−166.

    Google Scholar

    [35] 沈立建, 刘成林. 2018. 显生宙全球海水化学成分演化及其对蒸发岩沉积的约束[J]. 岩石学报, 34(6): 1819−1834.

    Google Scholar

    [36] 谭红兵, 马万栋, 马海州, 等. 2004. 塔里木盆地西部古盐矿点卤水水化学特征与找钾研究[J]. 地球化学, 33(2): 152−158. doi: 10.3321/j.issn:0379-1726.2004.02.006

    CrossRef Google Scholar

    [37] 谭红兵. 2005. 塔里木盆地西部古盐岩地球化学与成钾预测研究[D]. 中国科学院研究生院(青海盐湖研究所)博士学位论文: 30−83.

    Google Scholar

    [38] 唐敏, 刘成林, 焦鹏程. 2009. 库车盆地古近纪岩盐层中钾盐资源量预测研究[J]. 矿床地质, 28(4): 503−509. doi: 10.3969/j.issn.0258-7106.2009.04.012

    CrossRef Google Scholar

    [39] 唐敏, 任永国, 曹养同. 2012. 库车盆地古近纪—新近纪蒸发岩沉积演化特征及其资源效应初步探讨[J]. 盐湖研究, 20(3): 1−8.

    Google Scholar

    [40] 王凡, 邓小林, 韦钊, 等. 2017. 库车坳陷西段古近纪成盐构造背景及后期盐构造特征分析[J]. 矿物岩石地球化学通报, 增刊: 781−782.

    Google Scholar

    [41] 王凡, 王永明, 李晓亚, 等. 2018. 新疆库车坳陷西段古近系高溴岩盐的发现及意义[J]. 中国煤炭地质, 30(6): 75−81. doi: 10.3969/j.issn.1674-1803.2018.06.15

    CrossRef Google Scholar

    [42] 王凡, 邓小林, 郑绵平, 等. 2022. 新疆库车坳陷西段膏盐层沉积、地球化学特征及找钾方向[J]. 地球科学, 47(1): 56−71. doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201007

    CrossRef Google Scholar

    [43] 吴坤, 刘成林, 焦鹏程, 等. 2014. 新疆库车盆地钾盐科探1井含盐系地球化学特征及找钾指示[J]. 矿床地质, 33(5): 1011−1019. doi: 10.3969/j.issn.0258-7106.2014.05.010

    CrossRef Google Scholar

    [44] 邢万里, 刘成林, 王安建, 等. 2013. 库车前陆盆地古近系蒸发岩岩石学、矿物学与成钾环境分析——以DZK01孔岩芯为例[J]. 地球学报, 34(5): 559−566. doi: 10.3975/cagsb.2013.05.06

    CrossRef Google Scholar

    [45] 徐洋, 刘成林, 焦鹏程, 等. 2017. 塔里木盆地库车坳陷古新统-始新统蒸发岩地球化学特征及成钾分析——以KL4井为例[J]. 岩石矿物学杂志, 36(5): 755−764. doi: 10.3969/j.issn.1000-6524.2017.05.015

    CrossRef Google Scholar

    [46] 徐洋, 曹养同, 刘成林, 等. 2018. 库车盆地始新世盐湖物源及蒸发浓缩程度研究[J]. 地质学报, 92(8): 1617−1629. doi: 10.3969/j.issn.0001-5717.2018.08.005

    CrossRef Google Scholar

    [47] 尹观, 王成善. 1998. 西藏南部中白垩世的锶、硫同位素组成及其古海洋地质意义[J]. 沉积学报, 16(1): 107−111.

    Google Scholar

    [48] 尹明, 李家熙. 2011. 岩石矿物分析(第四版)第二分册[M]. 北京: 地质出版社: 447−521.

    Google Scholar

    [49] 雍天寿, 单金榜. 1986. 白垩纪及早第三纪塔里木海湾的形成与发展[J]. 沉积学报, 4(3): 67−75.

    Google Scholar

    [50] 张民立, 尹达, 何勇波, 等. 2014. BH-WEI抗“三高”钻井液技术在克深208 的应用[J]. 钻井液与完井液, 31(1): 32−36,97. doi: 10.3969/j.issn.1001-5620.2014.01.009

    CrossRef Google Scholar

    [51] 张伟, 刘丛强, 梁小兵. 2007. 硫同位素分馏中的生物作用及其环境效应[J]. 地球与环境, 3: 223−227. doi: 10.3969/j.issn.1672-9250.2007.03.005

    CrossRef Google Scholar

    [52] 章振国, 高继雷, 张向文. 2010. 塔里木盆地古代蒸发岩硫同位素地球化学研究. 甘肃地质[J], 19(1): 32−37.

    Google Scholar

    [53] 赵艳军, 刘成林, 张华. 等. 2013. 古代石盐岩流体包裹体均一温度分析方法及古环境解释[J]. 地球学报, 34(5): 603−609. doi: 10.3975/cagsb.2013.05.11

    CrossRef Google Scholar

    [54] 郑绵平, 袁鹤然, 张永生, 等. 2010. 中国钾盐区域分布与找钾远景[J]. 地质学报, 84(11): 1523−1553.

    Google Scholar

    [55] 郑绵平, 张震, 张永生, 等. 2012. 我国钾盐找矿规律新认识和进展[J]. 地球学报, 33(3): 280−294. doi: 10.3975/cagsb.2012.03.02

    CrossRef Google Scholar

    [56] 郑绵平, 侯献华, 于常青, 等. 2015. 成盐理论引领我国找钾取得重要进展[J]. 地球学报, 36(2): 129−139. doi: 10.3975/cagsb.2015.02.01

    CrossRef Google Scholar

    [57] 郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社: 1−278.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(813) PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint